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PART IIL

MAGNETISM.

CHAPTER L.
ELEMENTARY THEORY OF MAGNETISM.

871.] CerraiN bodics, as, for instance, the iron ore called load-
stone, the earth itself, and pieces of steel which have been sub-
jected to certain treatment, are found to possess the following
properties, and are called Magnets.

If, near any part of the earth’s surface except the Magnetic
Poles, a magnet be suspended so as to turn freely about a vertical
axis, it will in general tend to set itself in a certain azimuth, and
if disturbed from this position it will oscillate about it. An un-
magnetized body has no such tendency, but is in equilibrium in
all azimuths alike.

372.] It is found that the force which acts on the body tends
to cause a certain line in the body, called the Axis of the Magnet,
to hecome parallel to a certain line in space, ealled the Direction
of the Magnetic Force.

Let us suppose the magnet suspended so as to be free to turn
in all directions about a fixed point. To eliminate the action of
its weight we may suppose this point to be its centre of gravity.
Let it come to a position® of equilibrium. Mark two points on
the magnet, and note their positions in space. Then let the
magnet be placed in a new position of equilibrium, and note the
positions in space of the two marked points on the magnet.

Since the axis of the magmet coincides with the direction of
magnetic force in both positions, we have to find that line in
the magnet which occupies the same position in space before and

VOT. IL B
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2 ELEMENTARY THEORY OF MAGNETISM. [373.

after the motion. It appears, from the theory of the motion of
bodies of invariable form, that such a line always exists, and that
a motion equivalent to the actual motion might have taken place
by simple rotation round this line.

To find the line, join the first and last posilions of each of the
marked points, and draw planes bisecting these lines at right
angles. The intersection of these plancs will be the line required,
which indicates the direction of the axis of the magnet and the
direction of the magnetic force in space.

The method just described is not convenient for the practical
determination of these directions. We shall return to this subject
when we treat of Magnetic Measurements.

The direction of the magnetic force is found to be different at
different parts of the carth’s surface. If the end of the axis of
the magnet which points in a northerly direction be marked, it
has been found that the direction in which it sets itself in general
deviates from the true meridian to a considerable extent, and that
the marked end points on the whole downwards in the northern
hemisphere and upwards in the southern. :

The azimuth of the direction of the magnetic force, measured
from the true north in a westerly direction, is called the Variation,
or the Magnetic Dechination. The angle between the direction of
the magnetic force and the horizontal plane is called the Magnetic
Dip. These two angles determine the direction of the magnetic
force, and, when the magnetic intensity is also known, the magnetic
force is completely determined. The determination of the values
of these three elements at different parts of the earth’s surface,
the discussion of the manner in which they vary according to the
place and time of observation, and the investigation of the causes
of the magnetic force and its variations, constitute the science of
Terrestrial Magnetism,

373.] Let us now suppose that the axes of several magnets have
been determined, and the end of each which points north marked.
Then, if one of these be freely suspended and another brought
near it, it is found that two marked ends repel each other, that
a marked and an unmarked end attract each other, and that two
unmarked ends repel each other.

If the magnets are in the form of long rods or wires, uniformly
and longitudinally magnetized, see below, Art. 384, it is found
that the greatest manifestation of force occurs when the end of
one magnet is held near the end of the other, and that the
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374.] LAW OF MAGNETIC FORCE. 3

phenomena can be accounted for by supposing that like ends of
the magnets repel each other, that unlike ends attract each other,
and that the intermediate parts of the magnets have no sensible
mutual action.

The ends of a long thin magnet are commonly called its Poles.
In the case of an indefinitely thin magnet, uniformly magnetized
throughout its length, the extremities act as centres of foree, and
the rest of the magnet appears devoid of magnetic action. In
all actual magnets the magnetization deviates from uniformity, so
that no single points can be taken as the poles. Coulomb, how-
ever, by using long thin rods magnetized with care, succeeded in
establishing the law of force between two magnetic poles ¥,

The repulsion between two magnetic poles is in the straight line joining
them, and ts numerically equal fo the product of the strengths of
the poles divided by the square of the distance between them.

374.] This law, of course, assumes that the strength of each
pole is measured in terms of a certain unit, the magnitude of which
may be deduced from the terms of the law,

The unit-pole is a pole which points north, and is such that,
when placed at unit distance from another unit-pole, it repels it
with unit of force, the unit of force being defined as in Art. 6. A
pole which points south is reckoned negative.

If m; and m, are the strengths of two magnetic poles, ¢ the
distance between them, and f* the force of repulsion, all expressed

numerieally, then my s,

f=’Z2

But if [m], L] and [#] be the concrete units of magnetic pole,
length and force, then

2
S =[] &5
whence it follows that
ML
[m?] = [L2F] = [LZ TZJ’
or [m] = [L2 T*IM%].
The dimensions of the unit pole are therefore £ as regards length,
(—1) as regards time, and % as regards mass. These dimensions

are the same as those of the electrostatic unit of electricity, which
is specified in exactly the same way in Arts, 41, 42.

* His experunents on magnetism with the Torsion Balance are contained in
the Memoirs of the Academy of Paris, 1780-9, and in Biot’s T'raité de Physigue,
tom, iii.

B 2
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4 ELEMENTARY THEORY OF MAGNETISM. [375.

375.] The accuracy of this law may be considered to have
been established by the experiments of Coulomb with the Torsion
Balanece, and confirmed by the experiments of Gauss and Weber,
and of all observers In magnetic observatories, who are every day
making measurements of magnetic quantities, and who obtain results
which would be inconsistent with each other if the law of force
had been erroneously assumed. It derives additional support from
its consistency with the laws of electromagnetic phenomena.

376.] The quantity which we have hitherto called the strength
of a pole may also be called a quantity of < Magnetism,” provided
we attribute no properties to ¢ Maguetism’ except those observed
in the poles of magnets,

Since the expression of the law of force between given quantities
of “Magmnetism’ has exactly the samée mathematical form as the
law of force between quantities of ¢ Electricity’ of equal numerical
value, much of the mathematical treatment of magnetism must be
similar to that of electricity., There are, however, other properties
of magnets which must be borne in mind, and which may throw
some light on the electrical properties of bodies.

Relation between the Poles of a Magnet.

377.] The quantity of magnetism at one pole of a magnet is
always equal and opposite to that at the other, or more generally
thus :—

In every Magnet the tolal quaniily of Magnetism (reckoned alge-
braically) is zero.

Hence 1n a field of force which is uniform and parallel throughout
the space occupied by the magnet, the force acting on the marked
end of the magnet is exactly equal, opposite and parallel to that on
the unmarked end, so that the resultant of the forces is a statical
couple, tending te place the axis of the magnet in a determinate
direction, but not to move the magnet as a whole in any direction.

This may be easily proved by putting the magnet into a small
vessel and floating it in water. The vessel will turn in a certain
direction, so as to bring the axis of the magnet as near as possible
to the direction of the earth’s magnetic force, but there will be no
motion of the vessel as a whole in any direction; so that there can
be no excess of the foree towards the north over that towards the
south, or the reverse. It may also be shewn from the fact that
magnetizing a piece of steel does not alter its weight. It does alter
the apparent position of its centre of gravity, causing it in these
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380.] MAGNETIC ‘MATTER. 5

latitudes to shift along the axis towards the north. The centre
of inertia, as determined by the phenomena of rotation, remains
unaltered.

378.] If the middle of a long thin magnet be examined, it is
found to possess mo magnetic properfics, but if the magnet be
broken at that point, each of the pieces is found to have a magnetic
pole at the place of fracture, and this new pole is exactly equal
and opposite to the other pole belonging to that piece. It is
impossible, either by magnetization, or by breaking magnets, or
by any other means, to procure a magnet whose poles are un-
equal.

If we break the long thin magnet into a number of short pieces
we shall obtain a series of short magnets, each of which has poles
of nearly the same strength as those of the original long magnet.
This multiplication of poles is not necessarily a creation of energy,
for we must remember that after breaking the magnet we have to
do work to separate the parts, in consequence of their attraction
for one another.

879.] Let us now put all the pieces of the magnet together
as at first. At cach point of junction there will be two poles
exactly equal and of opposite kinds, placed in contact, so that their
united action on any other pole will be null. The magnet, thus
rebuilt, has therefore the same properties as at first, namely two
poles, one at each end, equal and opposite to each other, and the
part between these poles exhibits no magnetic action.

Since, in this case, we know the long magnet to be made up
of little short magnets, and since the phenomena are the same
ags in the case of the unbroken magnet, we may regard the magnet,
even before being broken, as made up of small particles, each of
which has two equal and opposite poles. 1f we suppose all magnets
to be made up of such particles, it is evident that since the
algebraical quantity of magnetism in each particle is zero, the
quantity in the whole magnet will also be zero, or in other words,
its poles will be of equal strength but of opposite kind.

Theory of Muagnetic © Matter.

380.] Since the form of the law of magnetic action 1s identical
with that of electrie action, the same reasons which can be given
for attributing electric phenomena to” the action of one ¢fluid’
or two ‘fluids’ can also be used in favour of the existence of a
magnetic matter, or of two kinds of magnetic matter, fluid or
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6 ELEMENTARY THEORY OF MAGNETISM. [380.

otherwise. In fact, a theory of magnetic matter, if used in a
purely mathematical sense, cannot fail to explain the phenomena,
provided new laws are freely introduced to account for the actual
facts.

One of these new laws must be that the magnetic fluids cannot
pass from one molecule or particle of the magnet to another, but
that the process of magnetization consists in separating to a certain
extent the two fluids within each particle, and causing the one fluid
to be more concentrated at one end, and the other fluid to be more
concentrated at the other end of the particle. This is the theory of
Poisson.

A particle of a magnetizable body is, on this theory, analogous
to a small insulated conductor without charge, which on the two-
fluid theory contains indefinitely large but exactly equal quantities
of the two electricities. When an electromotive force acts on the
conductor, it separates the electricities, causing them to become
manifest at opposite sides of the conductor. In a similar manner,
according to this theory, the magnetizing force causes the two
kinds of magnetism, which were originally in a neutralized state,
to be separated, and to appear at opposite sides of the magnetized
particle.

In certain substances, such as soft iron and those magnetic
substances which cannot be permanently magnetized, this magnetic
condition, like the electrification of the conductor, disappears when
the inducing force is removed. TIn other substances, such as hard
steel, the magnetic condition is produced with difficulty, and, when
produced, remains after the removal of the inducing force.

This is expressed by saying that in the latter case there is a
Coercive Force, tending to prevent alteration in the magnetization,
which must be overcome before the power of a magnet can be
either increased or diminished. In the case of the electrified body
this would correspond to a kind of electric resistance, which, unlike
the resistance observed in metals, would be equivalent to complete
insulation for electromotive forces below a certain value.

This theory of magnetism, like the corresponding theory of
electricity, is evidentlly too large for the facts, and requires to be
restricted by artificial conditions. For it not only gives no reason
why one body may not differ from another on account of having
more of both fluids, but 1t enables us to say what would be the
properties of a body containing an excess of one magnetic fluid.
It 1s true that a reason is given why such a body cannot exist,
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381.] MAGNETIC POLARIZATION. 7

but this reason is only introduced as an after-thought to explain
this particular fact. It does not grow out of the theory.

881.] We must therefore seek for a mode of expression which
shall not he capable of expressing too much, and which shall leave
room for the introduction of new ideas as these are developed from
new facts. This, I think, we shall obtain if we begin by saying
that the particles of & magnet are Polarized. -

Meaning of the term © Polarization.’

When a particle of a body possesses properties related to a
certain line or direction in the body, and when the body, retaining
these properties, is turned so that this direction is reversed, then
if as regards other bodies these properties of the particle are
reversed, the particle, in reference to these properties, is said to be
polarized, and the properties are said to constitute a particular
kind of polarization.

Thus we may say that the rotation of a body about an axis
constitutes a kind of polarization, because if, while the rotation
continues, the direction of the axis is turned end for end, the body
will be rotating in the opposite direction as regards space.

A conducting particle through which there is a current of elee-
tricity may be said to be polarized, because if it were turned round,
and if the current continued to flow in the same direction as regards
the particle, its direction in space would be reversed.

In short, if any mathematical or physical quantity is of the
nature of a vector, as defined in Art. 11, then any body or particle
to which this directed quantity or vector belongs may be said to
be Polarized ¥, because 1t has opposite properties in the two opposite
directions or poles of the directed quantity.

The poles of the earth, for example, have reference to its rotation,
and have accordingly different narmes.

* The word Polarization has been used in a sense not consistent with this in
Optics, where a ray of light is said to be polarized when it has properties relating
to its sides, which are identical on opposite sides of the ray. This kind of polarization
refers to another kind of Directed Quantity, which may be called a Dipolar Quantity,
in opposition to the former kind, which may be called Unipolar.

When & dipolar quantity is turned eund for end it remains the same as before.
Tensions and Pressures in solid bodies, Extensions, Compressions and Distortions
and most of the optical, electrical, and magnetic properties of crystallized bodies
are dipolar quantities,

The property produced by magnetism in transparent bodies of twisting the plane
of polarization of the incident light, is, like magnetism itself, a unipolar property.
The rotatory property referred to in Art. 303 is also unipolar.
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B ELEMENTARY THEORY OF MAGNETISM. [382.

BMeaning of the term ¢ Magnetic Polarization.’

382.] In speaking of the stale of the particles of a magnet as
magnetic polarization, we imply that each of the smallest parts
into which a magmet may be divided has certain properties related
to a definite direction through the particle, called its Axis of
Magnetization, and that the properties related to one end of this
axis are opposite to the properties related to the other end.

The properties which we attribute to the particle are of the same
kind as those which we observe in the complete magnet, and in
assuming that the particles possess these properties, we only assert
what we can prove by breaking the magnet up into small pieces,
for each of these is found to be a magnet.

Properties of & Magnetized Particle.

383.] Let the element dzdydz be a particle of a magnet, and
let us assume that its magnetic properties are those of a magnet
the strength of whose positive pole is m, and whose length is ds.
Then if P is any point in space distant » from the positive pole and
v from the negative pole, the magnetic potential at P will be

Z:— due to the positive pole, and — l} due to the negative pole, or
=" 1
V= — (). (1)

If ds, the distance between the poles, is very small, we may put
¥—r = dscose, (2)

where € is the angle between the vector drawn from the magnet
to P and the axis of the magnet, or

V= zzr_gl_scos €. (3)

Magnetic Moment.
384.] The product of the length of a uniformly and longitud-

inally magnetized bar magmnet into the strength of its positive pole
1s called its Magnetic Moment.

Intensity of Magnetization.
The intensity of magnetization of a magnetic particle is the ratio
of its magnetic moment to its volume. We shall denote it by 1.
The magnetization at any point of a magnet may be defined
by its intensity and its direction. Its direction may be defined by
its direction-cosines A, pu, v.
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Components of Magnetization.

The magnetization at a point of a magnel (being a vector or
directed quantity) may be expressed in terms of its three eom-
ponents referred to the axes of coordinates. Calling these 4, B, C,

A= 1A, B =1, C=1y,
and the numerical value of 7 is given by the equation (4)
12 = A% 4 B% + C2. (5)

385.] If the portion of the magnet which we consider is the
differential element of volume dzdydz, and if 7 denotes the intensity
of magnetization of this element, its magnetic moment is I dzdydz.
Substituting this for » ds in equation (3), and remembering that

reose = A (€—2)+p(n—yg)+v({—2), (6)
where &, 7,  are the coordinates of the extremity of the vector 7
drawn from the point (2, 7, 2), we {ind for the potential at the point
(& n, €) due to the magnetized element at (2, 7, 2),

BV = {d(6~2)+ B(n—p)+ C(—2)} = dedyde.  (7)

To obtain the potential at the point (¢, 7, {) due to a magnet of
finite dimensions, we must find the integral of this expression for
every element of volume included within the space occupied by
the magnet, or

r=[[[1a¢-0+Ba—p+0C-a) s deayde  (3)
Integrating by parts, this becomes

V:ffAldydz+ff31dzdm+ffcldxdy
_fff (‘M ‘?B d)dmlydz,

where the double integration in the first three terms refers to th(,
surface of the magnet, and the triple integration in the fourth to
the space within it.

If 7, m, n denote the direction-cosines of the normal drawn
outwards from the element of surface 48, we may write, as in
Art. 21, the sum of the first three terms,

f/(14+m3+no);ds,

where the integration is to be extended over the whole surface of
the magnet.
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10 ELEMENTARY THEORY OF MAGNETISM. [386.

If we now introduce two new symbols & and p, defined by the
equations c=14+mB4nC,
d4d dB dC
==t g+ a)
the expression for the potential may be written

szf;d3+f//;dwdydz.

386.] This expression is identical with that for the electric
potential due to a body on the surface of which there is an elec-
trification whose surface-density is o, while thronghout its substance
there is a bodily electrification whose volume-density is p. Hence,
if we assume o and p to be the surface- and volume-densities of the
distribution of an imaginary substance, which we bave called
“ magnelic matter,” the potential due to this imaginary distribution
will be identical with that due to the actual magnetization of every
element of the magnet.

The surface-density o is the resolved part of the intensity of
magnetization 7 in the direction of the normal to the surface drawn
outwards, and the volume-density p 1s the °convergence’ (see
Art. 25) of the magnetization at a given point in the magnet.

This method of representing the action of a magnet as due
to a distribution of ¢ magnetic matter’ is very eonvenient, but we
must always remember that it is only an artificial method of
representing the action of a system of polarized particles.

On the Action of one Magnetic Molecule on another.

387.] If, as in the chapter on Spherical Harmonics, Art. 129,
we make d d d

— — = — 1

G= ety T ™)

where 7, m, » are the direction-cosines of the axis /4, then the

potential due to a magnetic molecule at the origin, whose axis is

parallel to 4,;, and whose magnetic moment is m,, is

d m m
N==gr » =g @

where A, is the cosine of the angle between £, and .

Again, if a second magnetic molecule whose moment is #,, and
whose axis is parallel to 4,, is placed at the extremity of the radius
vector 7, the potential energy due to the action of the one mafrnet
on the other is
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ar, a
”/ d d]L = m1m2 m(;)! (3)

=2 (b= 320 0), (1)
where y,, is the cosine of the angle which the axes make with each
other, and A, A, are the cosines of the angles which they make
with 7.

Let us next determine the moment of the couple with which the
first magnet tends to turn the second round its eentre.

Let us suppose the second magnet turned through an angle
d¢ in a plane perpendicular to a third axis Z,, then the work done

against the magnetic forces will be d—Wd ¢, and the moment of the

dé
forces on the magnet in this plane will be
aw m1 My Ay
_—— = 5
7o ( —3A d(p) (5)

The actual moment aeting on the second magnet may therefore
be considered as the resultant of two couples, of which the first
acts in a plane parallel to the axes of both magnets, and tends to
increase the angle between them with a force whose moment ig

"2 i (4 Ay), (6)

while the second couple aets in the plane passing through » and
the axis of the second magnet, and tends to diminisi the angle
between these directions with a force

3 ”;1 ™2 cos (rh,) sin (r4,), (7)

where (r/k), (r%,), (/1 #,) denote the angles between the lines 7,
s oy

To determine the force acting on the second magnet in a direction

parallel to a line ]L3, we have to calculate

aw

an 8
A, Zdédkd&() ®)
7y
=3 p o {Ar g Ao by + Mg s — 5 Mg Ay Mg}, (9)
wmym
= 3, JA? (g —5 Ay )\)+3p13 A +3pp g 2)\1. (10)

If we suppose the actual force Lompounded of three forces, &,
H, and H,, in the directions of 7, %, and %, respectively, then the
force in the direction of 4, is

Ay Bt pyg 1)+ pios H. (11)
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12 ELEMENTARY THEORY OF MAGNETISM. [388.

Since the direction of 4, is arbitrary, we must have

3my my

R—"(I‘m"s)\l ) 1

(12)
3
i = 377;17722,\2’ 1, = mlmzl\ j

r

The force B is a repulsion, tending to increase »; #, and /7,
act on the second magnet in the directions of the axes of the first
and second magnet respectively.

This analysis of the forces acting between two small magnets
was first given in terms of the Quaternion Analysis by Professor
Tait in the Quarteriy Math., Journ. for Jan, 1860. See also his
work on Quaternions, Art. 414,

Particular Positions.

388.7 (1) If A, and A, are each equal to 1, that is, if the axes
of the magnets are in one straight line and in the same direction,
1o = 1, and the force between the magnets is a repulsion

R+H+H, =— ™", (13)

rt

The negative sign indicates that the force is an attraction.
(2) Jf A, and A, are zero, and p,, unity, the axes of the magnets
are parallel to each other and perpendicular to », and the force

18 a repulsion 3 my m, (14)

e
In neither of these cases is there any couple.

(3) If A, =1 and A, = 0, then p;, = 0. (15)
The force on the second magnet will be Miﬁz in the direction

of its axis, and the couple will be —%3— , tending to turn it parallel

my My

. 3m
to the first magnet. This is equivalent to a single force

acting parallel to the direction of the axis of the second magnet,
and cutting # at a point two-thirds of its length from s,.

Fig. 1.

Thus in the figure (1) two magnets are made to float on water, m,
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388.] FORCE BETWEEN TWO SMALL MAGNETS. 13

being in the direction of the axis of s, but having its own axis
at right angles to that of m,. If two points, 4, B, rigidly connected
with =, and m, respectively, are connected by means of a string 7,
the system will be in equilibrium, provided 7' cuts the line s, m2
at right angles at a point one-third of the distance from m, to ,.

(4) If we allow the second magnet to turn freely about its centre
till it comes to a position of stable equilibrium, # will then be a
minimum as regards 4,, and therefore the resolved part of the force
due to m,, taken in the direction of 4;, will be a maximum. Hence,
if we wish to produce the greatest possible magnetic force at a
given point in a given direction by means of magnets, the positions
of whose centres are given, then, in order to determine the proper
directions of the axes of these magnets to produce this effect, we
have only to place a magnet in the given direction at the given
point, and to observe the direction of stable equilibrium of the
axis of a second magnet when its centre is placed at each of the
other given points. The magnets must then be placed with their
axes in the directions indicated by that of the second magnet.

Of course, in performing this experi-
ment we must take aceount of ferrestral
magnetism, if it exists.

Let the second magnet be in a posi-
tion of stable equilibrium as regards its
direction, then since the couple acting
on it vanishes, the axis of the second
magmnet must be in the same plane with
that of the first. Hence

(B frg) = (hy 1)+ (7 3), (186)
and the couple being

m

;37”2 (sin (&, &,)— 3 cos (A, 7) 8in (7 4y)), (17}

we find when this is zero
tan (4, 7) = 2 tan (r4,), (18)
or tan H, m, R = 2 tan B m, H,. (19)
When this position has been taken up by the second magnet the

value of # becomes
av

_mzm,

where %4, is in the direction of the line of force due to m, at m,.
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14 ELEMENTARY THEORY OF MAGNETISM, [389.

avit av)* arp
2’V %l Yoy Y@
Hence the second magnet will tend to move towards places of
greater resultant force.

The force on the second magnet may be decomposed into a force
R, which in this case is always attractive towards the first magnet,
and a force H| parallel to the axis of the first magnet, where

mym, 4A241
R:_s_l_Z____l_ Hl = i " (21)

A r

In Fig. XVII, at the end of this volume, the lines of force and
equipotential surfaces in two dimensions are drawn. The magnets
which produce them are supposed to be two long eylindrical rods

Hence W=—m (20)

the sections of which are rcpresented by the circular blank spaces,
and these rods are magnetized transversely in the direction of the
Arrows.

If we remember that there is a tension along the lines of force, it
is easy to see that each magnet will tend to turn in the direction
of the motion of the hands of a watch.

That on the right hand will also, as a whole, tend to move
towards the top, and that on the left hand towards the bottom
of the page.

On the Potential Energy of a Magnet placed in a Magnetic Field.

389.] Let 7 be the magnetic potential due to any system of
magnets acting on the magnet under consideration. We shall call
¥ the potential of the external magnetic force.

If a small magnet whose strength is m, and whose length is ds,
be placed so that its positive pole is at a point where the potential
is ¥, and its negative pole at a point where the potential is 77, the
potential energy of this magnet will be m (F—F"), or, if ds is
measured from the negative pole to the positive,

ma ds. (n

If 7 is the intensity of the magnetization, and A, g, v its direc-

tion-cosines, we may write,
mds = Idzdydz,

N av _ )\JV av av
an ds ~ dz+ﬂdy+v7dzﬂ
and, finally, if 4, B, C are the components of magnetization,

A=)\L B:y[, O=v[,
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390.] POTENTIAL ENERGY OF A MAGNET. 15

so that the expression (1) for the potential energy of the element
of the magnet becomes

av arv . dr
— . — 2
(A Tz +de +Cdz)dx{lydz. (2)
To obtain the potential energy of a magnet of finite size, we
must integrate this expression for every element of the magnet.

We thus obtain
fo av ar dVv
W=ffj (A%JFB@ +0(Tz)dmzydz (3)
as the value of the potential energy of the magnet with respect
to the magnetic field in which it is placed.

The potential energy is here expressed in terms of the components
of magnetization and of thoese of the magnetic force arising from
external causes. '

By integration by parts we may express it in terms of the
distribution of magnetic matter and of magnetic potential

W:jf(Az+_Bm+ Cn) VdS—fffl/(% + %’i + [j—zc)dmdydz, (4)

where /, m, z are the direction-cosines of the normal at the element
of surface 8. If we substitute in this equation the expressions for
the surface- and volume-density of magnetic matter as given in
Art. 386, the expression becomes

w=[[veas+ [[[Voas. (%)

We may write equation (3) in the form

W= —/ff(Aa+Bﬁ+ Cvy)dudyde, (6)

where a, 8 and y are the components of the external magnetic force.

On the Magnetic Moment and Azis of a Magnet.

390.] If thronghout the whole space occupied by the magnet
the external magnetic force is uniform in direction and magnitude,
the components a, 3, y will be constant quantities, and if we write

/:UAdmdydz:lK, fffﬂdxdydz:mK, ffdemdydz ==K, (7)

the integrations being extended over the whole substance of the
magnet, the value of ¥ may be written

W=—-K{latmB+uy) (8)
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16 ELEMENTARY THEORY OF MAGNETISM, -[391.

In this expression /, m, # are the direction-cosines of the axis of
the magnet, and K is the magnetic moment of the magnet. If
€ is the angle which the axis of the magnet makes with the
direction of the magnetic force , the value of # may be written

W=—K$Hcose. (9)

If the magnet is suspended so as to be free to turn about a
vertical axis, as in the ecase of an ordinary compass needle, let
the azimuth of the axis of the magnet be ¢, and let it be inclined
6 to the horizontal plane. Let the force of terrestrial magnetism
be in a direction whose azimuth is & and dip ¢, then

a=§cosfcosd, B=~Y8cos sind, y= Hsin(; (10)
¢ = cos 6 cos ¢, m = cos 0 sin ¢, n = sinf; (11)
whence W=—K (cos{cos b cos (p—d) +sin {'sin ). (12)

The moment of the force tending to increase ¢ by turning the
magnet round a vertical axis is

-—%:—K{) cos (cos 8 sin (p—12). (13)

On the Expansion of the Polential of a Magnet in Solid Harmonics.

391.] Let 7 be the potential due to a unit pole placed at the
point (£ 0, {). The value of 7 at the point , 7, 2 1s
V= {(—a)+@—y)"+(—20} % (1)
This expression may be expanded in terms of spherical harmonics,
with their centre at the origin. We have then

V=ry+V,+F,+&e, (2)
when 7, = —::, r being the distance of (£, 7, ¢) from the origin, (3)

v, = §m+zf+ ¢z (1)
7, = 3(lx+ny+ (o) —(xz;;ﬁyz +2)(E 0+ ) ()
&e.

To determine the value of the potential energy when the magnet
is placed in the field of force expressed by this potential, we have
to integrate the expression for # in equation (3) with respect to
z, ¥ and z, considering &, 1, ¢ and 7 as constants.

If we consider only the terms introduced by 75, 7; and /, the
result will depend on the following volume-integrals,
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zxszfmzdydz, mK:ffdemdydz, nK=ffdexdydz; ©6)
L =fffAmdz-(lydz, M:ff/Bydmdydz, N=f//02dwdydz; (7
P =f/f(Bz+ Cy)dzdydz, @ =/:/:/~(C.'1,-+Az)dx.(lydz, ,

L= /ff(Ay+Bw)dzdydz. (8)

We thus find for the value of the potential energy of the magnet
placed in presence of the unit pole at the point (;, », ¢),

E£RL—M—N)+n2@M—N—L)+ (*(eN—L—I)+3(Py{+ Q(E+ Rén) (©)

75

This expression may also be rcgarded as the potential energy of
the unit pole in prescnce of the magnet, or more simply as the
potential at the point & n, { due to the magnet.

On the Centre of o Magnet and its Primary and Secondary Azes.

392.] This expression may be simplified by altering the directions
of the coordinates and the position of the origin. In the first
place, we shall make the direction of the axis of # parallel to the
axis of the magnet. This is equivalent to making

=1, m=0, n=0. (10)

If we change the origin of coordinates to the point (2, ¢, #), the
directions of the axes remaining unchanged, the volume-integrals
(K, mK and nK will remain unchanged, but the others will be
altered as follows :

L'= L—IK%, M =M—mKy, N =N—-nK7Z; (11)
P=P-Kmd+ny), @=0@— K@ua"+1), B=R—K(ly+mz"). (12)

If we now make the direction of the axis of @ parallel to the

axis of the magnet, and put

o = 2L_2-{K'[~:—ZY, y’= %7 2= %’ (13)
then for the new axes M and N have their values unchanged, and
the value of Z” becomes } (M +2N). P remains unchanged, and ¢
and £ vanish, We may therefore write the potential thus,

Kffsf_*_%(nz—-fz)(M—NH 8Pn¢ (14)
r r

VOL. IL. C

IRIS - LILLIAD - Université Lille 1



18 ELEMENTARY THEORY OF MAGNETISM. [392.

We have thus found a point, fixed with respect to the magnet,
such that the second term of the potential assumes the most simple
form when this point is taken as origin of coordinates. This point
we therefore define as the centre of the magnet, and the axis
drawn through it in the direction formerly defined as the direction
of the magnetic axis may be defined as the principal axis of the
magnet,.

‘We may simplify the result still more by turning the axes of »
and 2z round that of z through half the angle whose tangent is

]%V' This will cause P to become zero, and the final form
of the potential may be written
2 _p2y (M —
Ké3 4O M =D “g” M, (15)
r 7

This is the simplest form of the first two terms of the potential
of a magnet. When the axes of y and 2 are thus placed they may
be called the Sccondary axes of the magnet.

‘We may also determine the centre of a magnet by finding the
position of the origin of coordinates, for which the surface-integral
of the square of the second term of the potential, extended over
a sphere of unit radius, is a minimum,

The quantity which is to be made a minimum is, by Art. 141,

4(L2+M2 4 N*—MN—NL—LM)+3 (P24 Q%+ 1R%. (16)

The changes in the values of this quantity due te a change of
position of the origin may be deduced from equations (11) and (12).
Hence the conditions of a minimum are

20(2L—M—N)+3nQ+3mR = 0,
2m(@M—N—L)+3lR+3nP = 0, (17)
20 (2N—-L —M)+3mP4+31Q = 0.
If we assume { = 1, m = 0, » = 0, these conditions become
2L—M—N=0, Q=0 R=0, (18)
which are the conditions made use of in the previous invest-
igation. '

This investigation may be compared with that by which the
potential of a system of gravitating matter is expanded. In the
latter ecase, the most convenient point to assume as the origin
is the centre of gravity of the system, and the most convenient
axes are the principal axes of inertia through that point.

In the case of the magnet, the point ecorresponding to the centre
of gravity is at an infinite distance in the direction of the axis,
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394.] CONVENTION RESPECTING SIONS. 19

and the point which we call the centre of the magnet is a point
having different properties from those of the centre of gravity.
The quantities L, M, N correspond to the moments of inertia,
and P, @, & to the products of inertia of a material body, except
that Z, 3 and NV are not necessarily positive quantities.

When the centre of the magnet is taken as the origin, the
spherical harmonic of the second order is of the sectorial form,
having its axis coinciding with that of the magnet, and this is
true of no other point.

‘When the magnet is symmetrical on all sides of this axis, as
in the case of a figure of revolution, the term involving the harmonie
of the second order disappears entirely.

303.] At all parts of the earth’s surface, except some parts of
the Polar regions, one end of a magnet points towards the north,
or at least in a northerly direction, and the other in a southerly
direction. In speaking of the ends of a magnet we shall adopt the
popular method of calling the end which points to the north the
north end of the magnet. When, however, we speuk in the
language of the theory of magnctie fluids we shall use the words
Boreal and Austral. Boreal magnetism is an imaginary kind of
matter supposed to be most abundant in the northern parts of
the earth, and Austral magmnetism is the imaginary magnetic
matter which prevails in the southern regions of the earth. The
magnetism of the north end of a magnet is Austral, and that of
the south end is Boreal. When therefore we speak of the north
and south ends of a magnet we do not compare the magnet with
the earth as the great magnet, but merely express the position
which the magnet endeavours to take up when free to move. When,
on the other hand, we wish to compare the distribution of ima-
ginary magnetic fluid in the magnet with that in the earth we shall
use the more grandiloquent words Boreal and Austral magnetism.

394.7 In speaking of a field of magnetic force we shall use the
phrase Magnetic North to indicate the direction in which the
north end of a compass needle would point if placed in the field
of force.

In speaking of a line of magnetic force we shall always suppose
it to be traced from magnetic south to magnetic north, and shall
call this direction positive. In the same way the direction of
magnetization of a magnet is indicated by a line drawn from the
south end of the magnet towards the north end, and the end of
the magnet which points north is reckoned the positive end.

c2

IRIS - LILLIAD - Université Lille 1



20 ELEMENTARY THEORY OF MAGNETISM. [394-

We shall eonsider Austral magnetism, that is, the magnetism of
that end of a magnet which points north, as positive. If we denote
its numerical value by , then the magnetic potential

V= E(Zi),

and the positive direction of a line of force is that in which 7
diminishes.
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CHAPTER 11I.

MAGNETIC FORCE AND MAGNETIC INDUCTION,

395.] W= have already (Art. 386) determined the magnetic
potential at a given point duc to a magnet, the magnetization of
which is given at every point of its substance, and we have shewn
that the mathematical result may be expressed either in terms
of the actual magnetization of every element of the magnet, or
in terms of an imaginary distribution of ¢ magnetic matter,’ partly
condensed on the surface of the magnet and partly diffused through-
out its substance.

The magnetic potential, as thus defined, is found by the same
mathematical process, whether the given point is outside the magnet
or within it. The force exerted on a unit magnetic pole placed
at any point outside the magnet is deduced from the potential Ly
the same process of differentiation as in the corresponding electrical
problem. If the components of this force are a, 8, v,

av arv av
& Pey vt w @

To determine by experiment the magnetic force at a point within
the magnet we must begin by removing part of the magnetized
substance, so as to form a cavity within which we are to place the
magnetic pole. The force acting on the pole will depend, in general,
in the form of this cavity, and on the inclination of the walls of
the cavity to the direction of magnetization. Heunce it is necessary,
in order to avoid ambiguity in speaking of the magnetic force
within a magnet, to specify the form and position of the cavity
within which the force is to be measured. It is manifest that
when the form and position of the cavity is specified, the point
within it at which the magnetic pole is placed must be regarded as

a =
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22 MAGNETIC FORCE AND MAGNETIC INDUCTION. [396.

no longer within the substance of the magnet, and thercfore the
ordinary methods of determining the force become at once applicable,

396.] Let us now consider a portion of a magnet in which the
direction and intensity of the magnetization are uniform. Within
this portion let a cavity be hollowed out in the form of a eylinder,
the axis of which i parallel to the direction of magnetization, and
let a magnetic pole of unit strength be placed at the middle point
of the axis.

Since the generating lines of this cylinder are in the direction
of magnetization, there will be no superficial distribution of mag-
netism on the curved surface, and since the circular ends of the
cylinder are perpendicular to the direction of magnetization, there
will be a uniform superficial distribution, of which the surface-
density is £ for the negative end, and — 7 for the positive end.

Let the length of the axis of the cylinder be 24, and its radius @.
Then the force arising from this superficial distribution on a
magnetic pole placed at the middle point of the axis is that due
to the atfraction of the disk on the positive side, and the repulsion
of the disk on the negative side. These two forces arc equal and
in the same direction, and their sum is
6
B=4xl(1 «/a2_+b’é) ®)

From this expression it appears that the force depends, not on
the absolute dimensions of the cavity, but on the ratio of the length
to the diameter of the cylinder. Hence, however small we make the
cavity, the force arising from the surface distribution on its walls
will remain, in general, finite.

397.] We have hitherto supposed the magnetization to be uniform
and in the same direction throughout the whole of the portion of
the magnet from which the cylinder is hollowed out. When the
magnetization i1s not thus restricted, there will in general be a
distribution of imaginary magnetic matter through the substance
of the magnet. The cutting out of the cylinder will remove part
of this distribution, but since in similar solid figures the forces at
corresponding points are proportional to the linear dimensions of
the figures, the alteration of the force on the magnetic pole due
to the volume-density of magnetic matter will diminish indefinitely
as the size of the cavity is diminished, while the effect due to
the surface-density on the walls of the cavity remains, in general,
finite.

If, therefore, we assume the dimensions of the cylinder so small
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399.] MAGNETIC FORCE IN A CAVITY. 23

that the magnetization of the part removed may be regarded as
everywhere parallel to the axis of the cylinder, and of constant
magnitude 7, the force on a magnetic pole placed at the middle
point of the axis of the cylindrieal hollow will be compounded
of two forces. The first of these is that due to the distribution
of magnetic matter on the outer surface of the magnet, and
throughout its interior, exelusive of the portion hollowed out. The
components of this force are a, 8 and y, derived from the potential
by equations (1). The second is the force £, acting along the axis
of the cylinder in the direction of magnetization. The value of
this force depends on the ratio of the length to the diameter of the
cylindric cavity.

398.] Case I. Let this ratio be very great, or let the diameter

of the cylinder be small compared with its length. Expanding the
a

expression for £ in terms of 7 it becomes
1a? 3at
R=4ﬁ1§§b—2—§b—4+&c.}, (3)

a quantity which vanishes when the ratio of & to 4 is made infinite,
Hence, when the cavity is a very narrow cylinder with its axis parallel
to the direction of magnetization, the magnetic force within the
cavity is not affected by the surface distribution on the ends of the
cylinder, and the components of this force are simply a, 8, v, where

av av av
—_— _— —— 4
de’ A= dy’ Y dz (4)

a =

We shall define the force within a cavity of this form as the
magnetic force within the magnet. Sir William Thomson has
called this the Polar definition of magnetic force. 'When we have
occasion to consider this force as a vector we shall denote it
by H.

899.] Case II. Let the length of the cylinder be very small
compared with its diameter, so that the cylinder becomes a thin

disk. Jxpanding the expression for 2 in terms of Z, it becomes

3
R=4nz{1_f+lb_3_&c.},
a

5 2 (5)

the ultimate value of which, when the ratio of ¢ to & is made
infinite; 1s 4 7 1.

Hence, when the cavity is in the form of a thin disk, whose plane
is normal to the direction of magnetization, a unit magnetic pole
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placed at the middle of the axis experiences a force 477 in the
direction of magnetization arising from the superficial magnetism
on the circular surfaces of the disk *.

Since the components of [ are 4, B and C, the components of
this forece are 4w 4, 47 B and 4w C. This must be compounded
with the force whose components are a, B, 7.

400.] Let the actual force on the unit pole be denoted by the
vector B, and its components by «, & and ¢, then

= a+47mA4,
b=pB+47 B, (6)
¢c=vy+4n0C.

We shall define the force within a hollow disk, whose plane sides
are normal to the direction of magnetization, as the Magnetic
Induction within the magnet. Sir William Thomson has called
this the Electromagnetic definition of magnetic force.

The three vectors, the magnetization J, the magnetic force §,
and the magnetic induction B are connected by the vector equation

B=H+47J. (7)

Line-Integral of Magnetic Force.

401.] Since the magnetic force, as defined in Art. 398, is that
due to the distribution of free magnetism on the surface and through
the interior of the magnet, and is not affected by the surface-
magnetism of the cavity, it may be derived directly from the
general expression for the potential of the magnet, and the line-
integral of the magnetic force taken along any curve from the
point 4 to the point B is

B, dx dy dz
L GEvsZ vyt = v, ®)
where ¥4 and 7, denote the potentials at 4 and B respectively.

* On the force within cavities of other forms.

1. Any narrow <crevasse. The force arising from the surface-magnetism is
4 7 Tcose in the direction of the normal to the plane of the crevasse, where € is the
angle between this normal and the direction of magnetization. When the crevasse
is parallel to the direction of magnetization the force is the magnetic force §; when
the crevasse is perpendicular to the direction of magnetization the force is the
magnetic induction B.

2. In an elongated cylinder, the axis of which makes an angle e with the
direction of magnetization, the force arising from the surface-magnetism is 27 Isin e,
perpendicular to the axis in the plane containing the axis and the direction of
magnetization.

3. Ina sphere the force arising from surface-magnetism is ¢ w7 in the direction of
magnetization,
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Surface-Integral of Magnetic Induction.

402.] The magnetic induction through the surface § is defined
as the value of the integral

Q:ff‘BeosedS, )

where B denotes the magnitude of the magnetic induction at the
element of surface 48, and ¢ the angle between the direction of
the induction and the normal to the element of surface, and the
integration is to be extended over the whole surface, which may
be either closed or bounded by a closed curve.

If q, b, ¢ denote the components of the magnetic induction, and
¢, m, n the direction-cosines of the normal, the surface-integral
may be written

Q:/f(la+m6+nc)d& (10)

If we substitute for the components of the magnetic induction
their values in terms of those of the magnetic force, and the
magnetization as given in Art. 400, we find

) =ff(la+mﬁ+ny)d6’+4wff(lA+mB+nC)dS. (11)

We shall now suppose that the surface over which the integration
extends is a closed one, and we shall investigate the value of the
two terms on the right-hand side of this equation.

Since the mathematical form of the relation between magnetie
force and free magnetism is the same as that between electric
force and free electricity, we may apply the result given in Art. 77
to the first term in the value of @ by substituting a, 8, y, the
components of magnetic foree, for X, ¥, Z, the components of
electric force in Art. 77, and 37, the algebraic sum of the free
magnetism within the closed surface, for ¢, the algebraic sum of
the free electricity.

‘We thus obtain the equation

ff(la+mﬂ+ny)dS= 4L (12)

Since every magnetic particle has two poles, which are equal
in numerical magnitude but of opposite signs, the algebraic sum
of the magnetism of the particle is zero. Hence, those particles
which are entirely within the closed surface § can contribute
nothing to the algebraic sum of the magnetism within 8. The
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26 MAGNETIC FORCE AND MAGNETIC INDUCTION. [403.

value of M must therefore depend only on those magnetic particles
which are cut by the surface §.

Consider a small element of the magnet of length s and trans-
verse section 4%, magnetized in the direction of its length, so that
the strength of its poles is 7. The moment of this small magnet
will be ms, and the intensity of its magnetization, being the ratio
of the magnetic moment to the volume, will be
m
T (13)

Let this small magnet be cut by the surface 8, so that the
direction of magnetization makes an angle ¢ with the normal
drawn outwards from the surface, then if S denotes the area of

the section, 72 = d8cos €. (14)
The negative pole —m of this magnet lies within the surface S.
Hence, if we denote by dM the part of the free magnetism
within § which is contributed by this little magnet,
AM =—m =—1%,
=—Tcos€d8. (15)

To find M, the algebraic sum of the free magnetism within the
closed surface §, we must integrate this expression over the closed

surface, so that
M =—ff]'cose'd8’,

or writing 4, B, C for the compenents of magnetization, and 7, », »
for the direction-cosines of the normal drawn outwards,

E[:—ff(lA+mB+nC)dS. (16)

This gives us the value of the integral in the second term of
equation (11). The value of @ in that equation may therefore
be found in terms of equations (12) and (186),
Q=4aM—axsM=0, (17)
or, the surface-integral of the magnetic induction through any closed
surface is zero.
403.7 If we assume as the elosed surface that of the differential
element of volume dw dy dz, we obtain the equation
da db  de
b Wt B 18
dz T dy Y= (18)
This is the solenoidal condition which is always satisfied by the
components of the magnetic induction.

I =
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Sinece the distribution of magnetic induction is solenoidal, the
induction through any surface bounded by a closed curve depends
only on the form and position of the closed curve, and not on that
of the surface itself.

404.] Surfaces at every point of which
la4+mbt+ne=0 (19)
are called Surfaces of no induetion, and the intersection of two such

surfaces 1s called a Line of induction. The conditions that a curve,
s, may be a line of induction are

lde 1dy 14z
ads " bds cds
A system of lines of induction drawn through every point of a
closed curve forms a tubular surface called a Tube of induction.
The induction across any section of such a tube is the same.

If the induction is unity the tube is called a Unit tube of in-
duction.

(20)

All that Faraday * says about lines of magnetic force and mag-
netic sphondyloids is mathematically true, if understood of the
lines and tubes of magnetic induction.

The magnetic force and the magnetic induction are identical
outside the magnet, but within the substance of the magnet they
must be carefully distinguished. In a straight uniformly mag-
netized bar the magnetic force due to the magnet itself is from
the end which points north, which we call the positive pole, towards
the south end or negative pole, both within the magmet and in
the space without.

The magnetic induction, on the other hand, is from the positive
pole to the negative outside the magnet, and from the negative
pole to the positive within the magnet, so that the lines and tubes
of induction are re-entering or eyclic figures.

The importance of the magnetic induction as a physical quantity
will be more clearly seen when we study electromagnetic phe-
nomena. When the magnetic field 1s explored by a moving wire,
as in Faraday’s Ezp. Res. 3076, it is the magnetic induction and
not the magnetic force which is directly measured.

The Vector-Potential of Magnetic Induction.

405.] Since, as we have shewn in Art. 403, the magnetic in-
duction through a surface bounded by a closed curve depends on

* Exp. Res., series xxviii.
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28 MAGNETIC FORCE AND MAGNETIC INDUCTION. [406.

the closed curve, and not on the form -of the surface which is
bounded by it, it must be possible to determine the induction
through a closed curve by a process depending only on the nature
of that curve, and not involving the construction of a surface
forming a diaphragm of the curve.

This may be done by finding a vector [ related to B, the magnetic
induction, in such a way that the line-integral of U, extended round
the closed curve, is equal to the surface-integral of B, extended
over a surface bounded by the closed curve.

If, in Art. 24, we wrile F, G, H for ihe components of 2, and
@, b, ¢ for the components of B, we find for the relation between
these components

dlf da alr  dH aGq dF
=% "% ‘T m Twm g &Y

The vector 2, whose components are F, &, H, is called the vector-
potential of magnetic induction. The vector-potential at a given
point, due to a magnetized particle placed at the origin, is nume-
rically equal to the magnetic moment of the particle divided by
the square of the radius vector and multiplied by the sine of the
angle between the axis of magnetization and the radius vector,
and the direction of the vector-potential is perpendicular to the
plane of the axis of magnetization and the radius vector, and is
such that to an eye looking in the positive direction along the
axis of magnetization the vector-potential is drawn in the direction
of rotation of the hunds of a watch.

Hence, for a magnet of any form in which 4, B, C are the
components of magnetization at the point zy2, the components
of the vector-potential at the point &7 ¢ are

dp _ o
r=[[{(Z - Dy dy de,
dp dp
0= [[[(cZ—saDyiaya, (22)

dp dp
]I:fff(/i@— Dy o dy e

where p is put, for conciseness, for the reciprocal of the distance
between the points (§ 9, () and (%, 7, #), and the integrations are
extended over the space occupied by the magnet.

406.] The scalar, or ordinary, potential of magnetic force,
Art. 386, becomes when expressed in the same notation,

_ dp dp dpy ,
V_//f(A% + Brly +0%)dzdydz. (23)
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406.] VECTOR-POTENTIAL.
Remembering that 2p = — -2, and that the integral
dz dg g

dtp dip
[U %f +dﬂh@h

has the value —4 = (4) when the point (& 7, ) is included within
the limits of integration, and is zero when it is not go included,
(4) being the value of 4 at the point (& 7, ¢), we find for the value
of the z-component of the magnetic induction,

Ll _ge
a¢

dn
_ P64
ﬂquwhtm@ mw m«ﬁ”@%
_ § 472 @ @}
= Mﬂﬂ de vy T 4o dy dz

_fff ((Z.l: c]z"’)d'ﬂdydz (24)

The first term of this expression is evidently — v or a, the
. dg T
component of the magnetic force.

The quantity under the integral sign in the second term is zero
for every element of volume except that in which the point (¢, v, 9
is included. If the value of 4 at the point (&4, ¢) is (4), the
value of the second term is 4w (4), where (4) is evidently zero
at all points outside the magnet.

We may now write the value of the z-component of the magnetie

induction a=oaa+4T (A), (25)

an equation which is identical with the first of those given in
Art. 400. The equations for & and ¢ will also agree with those
of Art. 400.

We have already seen that the magnetic force §) is derived from
the scalar magnetic potential ¥ by the application of Hamilton’s
operator v, so that we may write, as in Art. 17,

H==v7, (26)
and tbat this equation is true both without and within the magnet.

It appears from the present investigation that the magnmetic
induction B is derived from the vector-potential ¥ by the appli-
cation of the same operator, and that the result is true within the
magnet as well as without it. )

The application of this operator to a vector-function produces,
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30 MAGNETIC FORCE AND MAGNETIC INDUCTION. [406.

in general, a scalar quantity as well as a vector. The scalar part,
however, which we have called the convergence of the vector-
function, vanishes when the vector-funclion satisfies the solenoidal
condition

ar dG dH
&y AT
By differentiating the expressions for F, G, H in equations (22), we
find that this equation is satisfied by these quantities.

We may therefore write the relation between the magnetic
induction and its vector-potential

B = A\ QI}
which may be expressed in words by saying that the magnetic
induction is the curl of its vector-potential. See Art. 25.

0. (27)
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MAGNETIC SOLENOIDS AND SHELLS ¥,

On Particular Forms of Magnets.

407.] Tr a long narrow filament of magnetic matter like a wire
is magnetized everywhere in a longitudinal direction, then the
product of any transverse section of the filament into the mean
intensity of thc magnetization across it is called the strength of
the magnet at that. section. If the filament were cut in two at
the section without altering the magnetization, the two surfaces,
when separated, would be found to have equal and opposite quan-
tities of superficial magnetization, each of which is numerically
equal to the strength of the magnet at the section.

A fillament of magnetic matter, so magnetized that its strength
1s the same at every section, at whatever part of its length the
section be made, is called a Magnetic Solenoid.

If m is the strength of the solenoid, ds an element of its length,
7 the distance of that element from a given point, and e the angle
which » makes with the axis of magnetization of the element, the
potential at the given point due to the element is

m ds cos e —ﬁitds
72 T2 ds

Integrating this expression with respect to 8, so as to take into
account all the elements of the solenoid, the potential is found
to be 7 —m (i _ 1 ,

n s
7, being the distance of the positive end of the solenoid, and 7,
that of the negative end from the point where ¥ exists.

Hence the potential due to a solenoid, and consequently all its
magnetic effects, depend only on its strength and the position of

* See Sir W. Thomson’s ‘ Mathematical Theory of Magnetism,” Pkil. Tranas., 1850,
or Reprint.
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its ends, and not at all on its form, whether straight or curved,
between these points.

Hence the ends of a solenoid may be called in a strict sense
its poles.

If a solenoid forms a closed curve the potential due to it is zero
at every point, so that such a solenoid can exert no magnetic
action, nor can its magnetization be discovered without breaking
it at some point and separating the ends.

If 2 magnet can be divided into solenoids, all of which either
form closed curves or have their extremities in the outer surface
of the magnet, the magnetization is said to be solenoidal, and,
since the action of the magnet depends entirely upon that of the
ends of the solenoids, the distribution of imaginary magnetic matter
will be entirely superficial.

Hence the condition of the magnetization being solencidal is

d4 dB dC

PZr A P
where 4, B, C are the components of the magnetization at any
point of the magnet.

408.] A longitudinally magnetized filament, of which the strength
varies at different parts of its length, may be conceived to be made
up of a bundle of solenoids of different lengths, the sum of the
strengths of all the solencids which pass through a given section
being the magnetic strength of the filament at that section. Hence
any longitudinally magnetized filament may be called a Complex
Solenoid.

If the strength of a complex solenoid at any section is , then
the potential due to its action is

V= f % gg ds where m is variable,

. 1dm

7y Ty r ds

ds.

This shews that besides the action of the two ends, which may
in this case be of different strengths, there is an action due to the
distribution of imaginary magnetic matter along the filament with
a linear density dm

ds '

Magnetic Shells.
409.] If a thin shell of magpetic matter is magnetized in a
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direction everywhere normal to its surface, the intcnsity of the
magnetization at any place multiplied by the thickness of the
sheet at that place is called the Strength of the magnetic shell
at that place.

If the strength of a shell is everywhere equal, it is called a
Simple magnetic shell ; if it varies from point to point it may be
conceived to be made up of a number of simple shells superposed
and overlapping each other. It is therefore called a Complex
magnetic shell.

Let 48 be an element of the surface of the shell at @, and &
the strength of the shell, then the potential at any point, P, due
to the element of the shell, is

AV =& L d8cese,
7
where ¢ is the angle between the vector @ P, or r and the normal

drawn from the positive side of the shell.
But if dw is the solid angle subtended by 8§ at the point P

72 dw = d8cos ¢,

whence AV = ddw,
and therefore in the case of a simple magnetic shell
V= 0dw,

ot, the potential due to a magnetic shell at any point is the product
of ils strengih imto the soliud angle sublended by its edge at the
given pont ¥,

410.] The same result may be obtained.in a different way by

supposing the magnetic shell placed in any field of magnetic force,
and determining the potential energy due to the position of the
shell.
. If 7 is the potential at the element 48, then the energy due to
this element is dv
dy
or, the product of the strength of the shell into the part of the
surface-integral of 'V due to the element d8 of the shell.

Hence, integrating with respect to all such elements, the energy
due to the position of the shell in the field is equal to the product
of the strength of the shell and the surface-integral of the magnetic
induction taken over the surface of the shell.

Since this surface-integral is the same for any two surfaces which

av dav,
¢(l% +m +nZZ_§)dS’

* This theorem is due to Gauss, General Theory of Terrestrial Magnetism, § 38,
VOL. II, D
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have the same bounding edge and do not include between them
any centre of force, the action of the magnetic shell depends only
on the form of its edge.

Now suppose the field of force to be that due to a magnetic
pole of strength %. We have seen (Art. 76, Cor.) that the surface-
integral over a surface bounded by a given edge is the product
of the strength of the pole and the solid angle subtended by the
edge at the pole. Hence the energy due to the mutual action
of the pole and the shell is

D mo,

and this (by Green’s theorem, Art. 100) is equal to the product
of the strength of the pole into the potential due to the shell at
the pole. The potential due to the shell is therefore ¢ w.

411.] If a magnetic pole m starts from a point on the negative
surface of a magnetic shell, and travels along any path in space so as
to come round the edge to a point close to where it started but on
the positive side of the shell, the solid angle will vary continuously,
and will increase by 4 7 during the process. The work done by
the pole will be 4 w@® »m, and the potential at any point on the
positive side of the shell will exceed that at the neighbouring point
on the negative side by 4 = ®.

If a magnetic shell forms a closed surface, the potential outside
the shell is everywhere zero, and that in the space within is
everywhere 4 7@, being positive when the positive side of the shell
is inward. Hence such a shell exerts no action on any magnet
placed either outside or inside the shell.

412.] If a magnet can be divided into simple magnetic shells,
either closed or having their edges on the surface of the magnet,
the distribution of magnetism is called Lamellar. If ¢ is the
sum of the strengths of all the shells traversed by a point in
passing from a given point to a point 2y z by a line drawn within
the magnet, then the conditions of lamellar magnetization are

d a¢ a4
4= T’ B = 7’ =

The quantity, ¢, which thus completely determines the magnet-
1zation at any point may be called the Potential of Magnetization.
It must be carefully distinguished from the Magnetic Potential.

413.] A magnet which can be divided into complex magnetic
shells is said to have a complex lamellar distribution of mag-
netism. The condition of such a distribution is that the lines of

IRIS - LILLIAD - Université Lille 1



415.] POTENTIAL DUE TO A LAMELLAR MAGNET. 35

magnetization must be such that a system of surfaces can be drawn
cutting them at right angles. This condition is expressed by the
well-known equation
dC _dB dAd dC dB d4
405, = DB — ) G =) ="

Lorms of the Potentials of Solenvidal and Lumellar Magnets.

414.] The O‘eneral expression for the sealar potential of 2 magnet

V= fff(A de Cﬁ)dmdydz

where p denotes the potential at («, y, 2) due to a unit magnetic
pole placed at & u, { or in other words, the reciprocal of the
distance between (€ 7, (), the point at which the potential is
measured, and (z, , ), the position of the element of the magnet
to which it is due.

This quantity may be integrated by parts, as in Arts. 96, 386.

V= ffp (4i+Bm+ Cn)dS— //f( {(Z[p)dxd/dz

where 7, m, » are the direction-cosines of the normal drawn out-
wards from 4§, an element of the surface of the magnet.

When the magnet 1s solenoidal the expression under the integral
sign 1n the second term is zero for every point within the magnet,
so that the triple integral is zero, and the scalar potentiul at any
point, whether outside or inside the magnet, is given by the surface-
integral in the first term.

The scalar potential of a solenoidal magnet is therefore com-
pletely determined when the normal component of the magnet-
ization at every point of the surface is known, and it is independent
of the form of the solenoids within the magnet.

415.] In the case of a lamellar magnet the magnetization is
determined by ¢, the potential of magnetization, so that

deo de de
A= T B = 2 C= 7
The expression for ¥ may therefore be written

dodp ddp  dodp
V= /ff(dzda; Yy g T @ an) W

Integrating this expression by parts, we find

_ffq) (Z p+m + n p)dS /ffq)(dizf (Z2 zf dzdyde.
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The second term is zero unless the point ( n, ¢) is included in
the magnet, in which ecase it becomes 4 7 (¢p) where () is the value
of ¢ at the point & », { The surface-integral may be expressed in
terms of 7, the line drawn from (z, g, #) to (§, 9, {), and 6 the angle
which this line makes with the normal drawn outwards from 448,
8o that the potential may be written

V:f/;li pcos0dS+4 w(p),

where the second term is of course zero when the point (& 7, () is
not included in the substance of the magnet.

The potential, 7, expresscd by this equation, is continuous even
at the surface of the magnet, where ¢ becomes suddenly zero, for
if we write

Q =/]%¢cos@d:§,

and if Q, is the value of  at a point just within the surface, and
£, that at a point close to the first but outside the surface,

Qy = O +47(P),
or Vz = Vl'
The quantity £ is not continuous at the surface of the magnet.
The components of magnetic induction are related to Q by the

equations
a0 b — (Zil 49)

de’ =~ dy’ CTT @

416.] In the case of a lamellar distribution of magnetism we
may also simplify the vector-potential of magnetic induction.

Its z-component may be written

. dpdp dodp

By integration by parts we may put this in the form of the

surface-integral
dp dp
F_—ff¢ (my, —n )45

de¢ do
or F:ffp(m-a;—n—@-)ds

The other components of the vector-potential may be written
down from these expressions by making the proper substitutions.

On Solid Angles.
417.] We have already proved that at any point P the potential
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due to a magnetic shell is equal to the solid angle subtended by
the edge of the shell multiplied by the strength of the shell. As
we shall have occasion to refer to solid angles in the theory of
electric currents, we shall now explain how they may be measured.

Definition. The solid angle subtended at a given point by a
closed curve is measured by the area of a spherical surface whose
centre is the given point and whose radius is unity, the outline
of which is traced by the intersection of the radius vector with the
sphere as it traces the closed eurve. This area is to be reckoned
positive or negative according as it lies on the left or the right-
hand of the path of the radius vector as seen from the given point.

Let (& n, €) be the given point, and let (z, g, 2) be a point on
the closed curve. The coordinates z, y, # are functions of s, the
length of the curve reckoned from a given point. They are periodic
functions of s, recurring whenever ¢ is increased by the whole length
of the closed curve.

We may calculate the solid angle » directly from the definition
thus. Using spherical coordinates with centre at (& », (), and
putting

z—¢f=rsinfcos¢, y—n=rsinlsing, z—¢=rcosbh,
we find the area of any curve on the sphere by integrating

W =/(1—cos€) d o,

or, using the rectangular coordinates,

7 — d d
w=/[l¢_j(; Z.Sf[(m_f)ji—(y—n)ngs,

?

the integration being extended round the curve s.

If the axis of 2z passes once through the closed curve the first
term is 27. If the axis of z does not pass through it this term
1s zero.

418.] This method of ealeulating a solid angle involves a choice
of axes which is to some extent arbitrary, and 1t does not depend
solely on the closed curve. Hence the following method, in which
no surface is supposed to be constructed, may be stated for the sake
of geometrical propriety.

As the radius vector from the given point traces out the closed
curve, let a plane passing through the given point roll on the
closed curve so as to be a tangent plane at easch point of the curve
in succession. Let a line of unit-length be drawn from the given
point perpendicular to this plane. As the plane rolls round the
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38 MAGNETIC SOLENOIDS AND SHELLS. [410.

closed curve the extremity of the perpendicular will trace a second
closed curve. Let the length of the second closed curve be o, then
the solid angle subtended by the first closed curve is

w=2rT—0.

This follows from the well-known theorem that the area of a
closed curve on a sphere of unit radius, together with the eireum-
ference of the polar curve, is numerically equal to the circumference
of a great circle of the sphere.

This construction is sometimes convenient for calculating the
solid angle subtended by a rectilinear figure. For our own purpose,
which is to form clear ideas of physical phenomena, the following
method is to be preferred, as it employs no constructions which do
not flow from the physical data of the problem.

419.]7 A closed curve ¢ is given in space, and we have to find
the solid angle subtended by s at a given point £.

If we consider the solid angle as the potential of a magnetic shell
of unit strength whose edge coincides with the closed curve, we
must define il as the work done by a unit magnetic pole against
the magnetic foree while 1t moves from an infinite distance to the
point 2. Hence, if o is the path of the pole as it approaches the
point P, the potential must be the result of a line-integration along
this path. It must also be the result of a line-integration along
the closed curve s. The proper form of the expression for the solid
angle must therefore be that of a double integration with respect
to the two curves ¢ and o.

When P is at an infinite distance, the solid angle is evidently
zero. As the point P approaches, the closed curve, as seen from
the moving point, appears to open out, and the whole solid angle
may be conceived to be gencrated by the apparent motion of the
different elements of the closed curve as the moving point ap-
proaches.

As the point £ moves from P to # over the clement do, the
element Q@ of the closed curve, which we denote by ds, will
change its position relatively to £, and the line on the unit sphere
corresponding to Q@ will sweep over an area on the spherical
surface, which we may write

do =Tdsda. (1

To find IT let us suppose P fixed while the closed eurve i1s moved
parallel to itself through a distance do equal to P£" but in the
opposite direction. 'The relative motion of the point £ will be the
same as In the real case.
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420.] GENERATION OF A SOLID ANGLE. 39

During this motion the element Q@ will gencrate an area in
the form of a parallelogram whose sides are parallel and equal
to GQ and PP, If we construct a pyramid on this parallelogram
as base with its vertex at P, the solid angle of this pyramid will
be the increment dw which we are in search of.

To determine the value of this solid
angle, let # and ¢ be the angles which
ds and do make with P respcet-
ively, and let ¢ be the angle between
the planes of these two angles, then
the area of the projection of the
parallelogram ds.do on a plane per-
pendicular to P@ or » will be

ds do sin 0 sin ¢ sin ¢,

and since this is equal 1o 72 dw, we find
1 . . .
do = [Idsdo = Fsm()sm&’smq‘)d&du. (2)
1 . . .
Hence IT = — sin 8 sin § sin ¢. (3)
7

420.] We may express the angles 8, &, and ¢ in terms of 7,
and its differential coefficients with respect to ¢ and o, for

r V4 r . . CZZT
cosG:X, cosﬁ_%, and smBsmB’coscp_rm- (4)
We thus find the following value for I12,
1 dry? dry* 1 ,d%r \?
2 (== —(Z_ P SRR .
= -G 0 -G 1= (aae) ®)

A third expression for TI in terms of rectangular coordinates
may be deduced from the consideration that the volume of the
pyramid whose solid angle is dw and whose axis is 7 1s

37%dew = 13 dsdo.

But the volume of this pyramid may also be expressed in terms
of the projections of #, ds, and do on the axis of 2,y and 2, as
a determinant formed by these nine projections, of which we must
take the third part. We thus find as the value of I,

5—1‘, n—y, {—z,

1 ﬁ: d” -(E_
U= | do’ do do (6)

dz  dy =z,
ds’ ds ds
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40 MAGNETIC SOLENQIDS AND SHELLS. [42 I.

This expression gives the value of IT free from the ambiguity of
sign introduced by equation (5),
421.] The value of w, the solid angle subtended by the closed

curve at the point 2, may now be written

m:f/Hdsdtr+m0, (7)

where the integration with respect to s is to be extended completely
round the closed curve, and that with respect to ¢ from 4 a fixed
point on the curve to the point . The constant w, is the value
of the solid angle at the point 4. It is zero if 4 is at an infinite
distance from the closed curve.

The value of @ at any point P is independent; of the form of
the curve between 4 and P provided that it does not pass through
the magnetic shell itself. If the shell be supposed infinitely thin,
and if P and P are two points close together, but £ on the positive
and 7’ on the negative surface of the shell, then the curves 4P and
4P’ must lie on opposite sides of the edge of the shell, so that PAP”
is a line which with the infinitely short line /7P forms a closed
circuit embracing the edge. The value of w at P exceeds that at 7’
by 4w, that is, by the surface of a sphere of radius unity.

Hence, if a closed eurve be drawn so as to pass once through
the shell, or in other words, if it be linked once with the edge

of the shell, the value of the integral f/ﬂ dsds extended round

both curves will be 4.

This integral therefore, considered as depending only on the
closed curve s and the arbitrary curve 4P, is an instance of a
function of multiple values, since, if we pass from 4 to P along
different paths the integral will have different values according
to the number of times which the curve 4P is twined round the
curve s,

If one form of the curve between A and P can be transformed
into another by continuous motion without intersecting the curve
8, the integral will have the same value for both curves, but if
during the transformation it intersects the closed curve z times the
values of the integral will differ by 4 7s.

If s and o are any two closed curves in space, then, if they are
not linked together, the integral extended once round both is
Zero.

If they are intertwined % times in the same direction, the value
of the integral 18 4 m#. It 1s possible, however, for two curves
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to be intertwined alternately in opposite directions, so that they
are inseparably linked together though the value of the integral
is zero. See Fig. 4. '

It was the discovery by Gauss of this very integral, expressing
the work done on a magnetic pole while de-
scribing a closed curve in presence of a closed
electric current, and indicating the geometrical
connexion between the two closed curves, that
led him to lament the small progress made in the
Geometry of Position since the time of Leibnitz,
Euler and Vandermonde. We have now, how- °
ever, some progress to report, chiefly due to Riemann, Helmholtz

Fig. 4.

and Listing.

422.] Let us now investigate the result of integrating with
respect to s round the closed curve.

One of the terms of TT in equation (7) is

f—zdnde _dn d ldz (8)
r* dods dodf rds)

If we now write for brevity

F:/l”"—””ds, G fldyd = fliizd ©)
r ds
the integrals being taken once round the closed curve s, this term
of IT may be written dn d2If

do dfds’

and the corresponding term offH ds will be

dn 4T
do d¢
Collecting all the terms of IT, we may now write
— (Zsz - /.I'l ds
dif d0\df AF fZH dn d¢
=(— — — 10
((ZT’ d{)dzr ( ( d ) - (10

This quantity is ev1dently the rate of decrement of o, the
magnetic potential, in passing along the curve o, or in other words,
it is the magnetic force in the direetion of da.

By assuming do successively in the direction of the axes of
z, ¥ and 2z, we obtain for the values of the components of the
magnetic force

IRIS - LILLIAD - Université Lille 1



42 MAGNETIC SOLENOIDS AND SHELLS. [423.

do dIH dG

$TTaET a4y T’
de dF dIf
I3=-‘—%=T§_—d_§" (11)
_ de _dG dF
YET AT AE T

The quantities ¥, @, H are the components of the vector-potential
of the magnetic shell whose strength is unity, and whose edge is
the curve s. They are not, like the scalar potential w, functions
having a series of values, but are perfectly determinate for every
point in space.

The vector-potential at a point P due to a magnetic shell bounded
by a closed curve may be found by the following geometrical
construction :

Let a point ) travel round the closed curve with a velocity
numerically equal to its distance from 2, and let a second point
R start from 4 and travel with a velocity the direction of which
is always parallel to that of @, but whose magnitude is unity.
‘When @ has travelled once round the closed curve join 4R, then
the line 42 represents in direction and in numerical magnitude
the vector-potential due to the closed curve at 7.

LPotential Energy of a Magnetic Skell placed in a Magnetic Field.

423.] We have already shewn, in Art. 410, that the potential
cnergy of a shell of strength ¢ placed in a magnetic field whose
potential is 7, is

M=¢/f(z%+mg+n%§)ds, (12)
where /, m, n are the direction-cosines of the normal to the shell
drawn from the positive side, and the surface-integral is extended
over the shell,

Now this surface-integral may be transformed into a line-integral
by means of the vector-potential of the magnetic field, and we

may write dz dy dz
]l[=—¢f(FE+G;ZE+II%)ds, (13)

where the integration is extended once round the closed curve s
which forms the edge of the magnetic shell, the direction of ds
being opposite to that of the hands of a wateh when viewed from
the positive side of the shell.

If we now suppose that the magnetic ficld is that due to a
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second magnetic shell whose strength is ¢’, the values of %, G, H
will be

1d.77 d7/ , _ ;fl dz ’
= ¢f c=¢ [1%uw, =y [l %, ay

where the integrations are extended once round the curve &, which
forms the edge of this shell.

Substituting these values in the expression for M we find

da dz dy dy dz dz
M—_‘M’ff Gt zatsm@d 19

where the integration is extended once round s and once round s'.
This expression gives the potential energy due to the mutual action
of the two shells, and 1s, as it ought to be, the same when ¢ and ¢
are interchanged. 'This expression with its sign reversed, when the
strength of each shell is unity, is called the potential of the two
closed curves s and ¢. It is a quantity of great importance in the
theory of electrie eurrents. If we write € for the angle between
the directions of the elements ds and ds’, the potential of ¢ and &

may be written
f f COS€ Isds. (16)

It is evidently a quantity of the dimension of a line.
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CIIAPTER 1V.

INDUCED MAGNETIZATION.

4247 WE have hitherto considered the actual distribution of
maguetization in a magnet as given explicitly among the data
of the investigation. We have not made any assumption as to
whether this magnetization is permancnt or temporary, except in
those parts of our reasoning in which we have supposcd the magnet
broken up into small portions, or small portions removed from
the magmnet in such a way as not to alter the magmetization of
any part.

‘We have now to consider the magnetization of bodies with
respect to the mode in which it may be produced and changed.
A bar of iron held parallel to the direction of the earth’s magnetic
force is found to become magnetic, with its poles turned the op-
posite way from those of the earth, or the same way as those of
a compass needle in stable equilibrium.

Any piece of soft iron placed in a magnetic field is found to exhibit
magnetic properties. If it be placed in a part of the field where
the magnetic force is great, as between the poles of a horse-shee
magnet, the magnetism of the iron becomes intense. If the iron
is removed from the magnetic ficld, its magnetic properties are
greatly weakened or disappear entirely. If the magnetic properties
of the iron depend entirely on the magnetie force of the ficld in
which it is placed, and vanish when it is removed from the field,
it is called Soft iron. Iron which is soft in the magnetic sense
is also soft in the literal sense. It is easy to bend it and give
it a permanent set, and difficult to break it.

Tron which retains its magnetic properties when removed from
the magnetic field is ecalled Hard iron. Such iron does not take
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425.] SOFT AND HARD STEEL. 45

up the magnetic state so readily as soft iron. The operation of
hammering, or any other kind of vibration, allows hard iron under
the influence of magnetic force to assume the magnetic state more
readily, and to part with it more readily when the magnetizing
force is removed. Iron which is magnetically hard is also more
stiff to bend and more apt to break.

The processes of hammering, rolling, wire-drawing, and sudden
cooling tend to harden iron, and that of annealing tends to
soften it.

The magnetic as well as the mechanical differences. between steel
of hard and soft temper are much greater than those between hard
and soft iron. Soft steel is almost as easily magnetized and de-
magnetized as iron, while the hardest steel is the best material
for magnets which we wish to be permanent.

Cast iron, though it contains more carbon than steel, is not
so retentive of magmetization.

If a magnet could be constructed so that the distribution of its
magnetization is not altered by any magnetic force brought to
act upon 1t, it might be called a rigidly magnctized body. The
only known body which fulfils this condition is a conducting eircuit
round which a constant electric current is made to How.

Such a circuit exhibits magnetic properties, and may therefore be
called an electromagmnet, but these magmetic properties are not
affected by the other magnetic forces in the field. We shall return
to this subject in Part ITV.

All actual magnets, whether made of hardened steel or of load-
stone, are found to be affected by any magnetic force which is
brought to bear upon them.,

It is convenient, for scientific purposes, to make a distinction
between the permanent and the temporary magnetization, defining
the permanent magnetization as that which exists independently
of the magnetic force, and the temporary magnetization as that
which depends on this force. We must observe, however, that
this distinction is not founded on a knowledge of the intimate
nature of magnetizable substances: it is only the expression of
an hypothesis introduced for the sake of bringing calculation to
bear on the phenomena. We shall return to the physical theory
of magnetization in Chapter V1.

425.] At present we shall investigate the temporary magnet-
ization on the assumption that the magnetization of any particle
of the substance depends solely on the magnetic foroe acting on
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46 INDUCED MAGNETIZATION, (425.

that particle. This magnetic force may arise partly from external
causes, and partly from the temporary magnetization of neigh-
bouring particles.

A body thus magnetized in virtue of the action of magnetic
foree, is said to be magnetized by induction, and the magnetization
is said to be induced by the magnetizing force.

The magnetization induced by a given magnetizing force differs
in different substances. It is greatest in the purest and softest
iron, in which the ratio of the magnetization to the magnetic force
may reach the value 32, or even 45 *.

Other substances, such as the metals nickel and cobalt, are
capable of an inferior degree of magnetization, and all substances
when subjected to a sufficiently strong magnetic force, are found
to give indications of polarity.

‘When the magnetization is in the same direction as the magnetic
force, as in iron, nickel, cobalt, &ec., the substance 1s called Para-
magnetic, Ferromagnetic, or more simply Magnetic. When the
induced magnetization is in the direction opposite to the magnetic
force, as in bismuth, &ec., the substance is said to be Diamagnetic.

In all these substances the ratio of the magnetization to the
magnetic force which produces it is exceedingly small, being only
about — gy i the case of bismuth, which is the most highly
diamagnetic substance known.

In crystallized, strained, and organized substances the direction
of the magnetization does not always coincide with that of the
magnetic force which produces it. The relation between the com-
ponents of magnetization, referred to axes fixed in the body, and
those of the magnetic force, may be expressed by a system of three
linear equations. Of the nine coefficients involved in these equa-
tions we shall shew that only six are independent. The phenomena
of bodies of this kind are classed under the name of Magneerystallic
phenomena.

‘When placed in a field of magnetic force, crystals tend to set
themselves so that the axis of greatest paramagnetic, or of least
diamagnetie, induction is parallel to the lines of magnetic force.
See Art. 435.

Io soft iron, the direction of the magnetization coincides with
that of the magnetic force at the point, and for small values of
the magnetic force the magnetization is nearly proportional to it.

* Thalén, Nova Acta, Reg. Soc. Sc., Upsal,, 1863.
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As the magnetic force increases, however, the magnetization in-
creases more slowly, and i1t would appear from experiments described
in Chap. VI, that there is a limiting value of the magnetization,
beyond which it ecannot pass, whatever be the value of the
magnetic force.

In the following outline of the theory of induced magnetism,
we shall begin by supposing the magnetization proportional to the
magnetic force, and in the same line with it.

Definition of the Cocflicient of Induced Magnetization.

426.] Let & be the magnetic force, defined as in Art. 398, at
any point of the body, and let 3 be the magnetization at that
point, then the ratio of § to & is called the Coefficient of Induced
Magnetization.

Denoting this coefficient by «, the fundamental equation of
induced magnetism is

J=«D. (1

The coefficient x is positive for iron and paramagnetic substances,
and negative for bismuth and diamagnetic substances. It reaches
the value 32 in iron, and it 1s said to be large in the case of nickel
and cobalt, but in all other cases it is a very small quantity, not
greater than 0.00001.

The force & arises partly from the action of magnets external
to the body magnetized by induction, and partly from the induced
magnetization of the body itself. Both parts satisfy the condition
of having a potential.

427.7 Let 7 be the potential due to magnetism external to the
body, let Q be that due to the induced magnetization, then if
U is the actual potential due to both causes

U= V4. (2)
Let the components of the magmetic force §), resolved in the

directions of #, 7, ¢, be a, 8, y, and let those of the magnetization
3 be 4, B, C, then by equation (1),

A4 = «a,
B =«p, (3)
C=«y.

Multiplying these equations by dz, dy, dz respectively, and
adding, we find

Adz+Bdy+Cde = x(adz+Bdy+ydz).
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But since e, 8 and y are derived from the potential U, we may
write the second member —«d Ul

Hence, if « is constant throughout the substance, the first member
must also be a complete differential of a function of #, g and ¢,
which we shall call ¢, and the equation becomes

dp =—«xdU, (4)
_ 2 _4¢ _ 49 -
where A—Zz., B-—@—, 0—'{l—z'. (O)

The magnetization is therefore lamellar, as defined in Art. 412.
It was shewn in Art. 386 that if p is the volume-deunsity of frve
magnetism,

(a’A dB ac

dz)

which becomes in virtue of equa’mons (3),

da
P=— G T )
But, by Art. 77,
da d3 dy
% + d‘y +- T 4 7 p.
Hence (1+47x)p =0,
whence p=20 (6)

throughout the substance, and the magnetization is therefore sole-
noidal as well as lamellar. See Art. 407,

There is therefore no frec magnetism except on the bounding
surface of the body. If v be the normal drawn inwards from the
surface, the magnetic surface-density is

dp
== (7)

The potential & due to this magnetization at any point may

therefore be found from the surface-integral

Q =ff;ds. (8)

The value of © will be finite and continuous everywhere, and
will satisfy Laplace’s equation at every point both within and
without the surface. If we distinguish by an accent the value
of Q outside the surface, and if »” be the normal drawn outwards,

we have at the surface
Q= Q; (9)
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dQ 4O’
%--{-87-:—4770', byAI't. 78,
d¢
—47rdv, by (7)’

au
:'—477"7”) by (4),

av  dQ
Z—QWK(%-{- 37), by (2).

We may therefore write the surface-condition

Cfl—?,—+41:x§—y—= 0. (10)

Hence the determination of the magnetism induced in a homo-
geneous isotropic body, bounded by a surface 8, and acted upon by
external magnetic forces whose potential is /, may be reduced to
the following mathematical problem.

We must find two functions & and Q’ satislying the following
conditions :

Within the surface S, Q must be finite and continuous, and must
satisly Laplace’s equation.

Outside the surface 8, & must be finite and continuous, it must
vanish at an infinite distance, and must satisfy Laplace’s equation,

At every point of the surface itself, O = ', and the derivatives
of @, Q" and 7 with respect to the normal must satisfy equation
(10). _

This method of treating the problem of induced magnetism is
due to Poisson. The quantity # which he uses in his memoirs is
not the same as «, but is related to 1t as follows :

dre(f—~1)+3%k=0. (11)
The coefficient « which we have here used was introduced by
J. Neumann,

428.] The problem of induced magnetism may be treated in a
different manner by introducing the quantity which we have called,
with Faraday, the Magnetic Induction.

The relation between B, the magnetic induction, §, the magnetic
force, and J, the magnetization, is expressed by the equation

B = -g)-}— 4 S . (12)
The equation which expresses the induced magnetization in
terms of the magnetic force is

I =«H. (13)

1+4 )gﬂ_*_
( K d;

VOL. 1I.
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Hence, eliminating J, we find
B=04+47x9 (14)
as the relation between the magnetic induction and the magnetic
force in substances whose magnetization is induced by magnetic
force.

In the most general case x may be a function, not only of the
position of the point in the substance, but of the direction of the
vector &), but in the case which we are now considering « is a
numerical quantity.

If we next write =1+47k, (15)
we may define u as the ratio of the magnetic induction to the
magnetic force, and we may call this ratio the magnetic inductive
capacity of the substance, thus distinguishing it from «, the co-
efficient of induced magnetization.

If we write U for the total magnetic potential compounded of 7,
the potential due to external causes, and Q for that due to the
induced magnetization, we may express a4, d, ¢, the components of
magnetic induction, and a, 8, y, the components of magnetic force,

as follows : au
a=puna Z—Md—m: }

dU

au

c=py=—pz |

The components a, &, ¢ satisfy the solenoidal condition

da db de
¢a 4o de 17
izt ay Tz (17)
Hence, the potential U/ must satisfy Laplace’s equation
2 2 2
alv  d*U  d*U (18)

T gE T T
at every point where p is constant, that is, at every point within
the homogeneous substance, or in empty space.

At the surface itself, if » 1s a normal drawn towards the magnetic
substance, and ¥’ one drawn outwards, and if the symbols of quan-
tities outside the substance are distinguished by accents, the con-
dition of continuity of the magnetic induction is

dv dy Z av dv  ,dv

a4+6d+d %+6@+c%—:o; (19)
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or, by equations (16),
2w, (20)

W, the coefficient of induction outside the magnet, will be unity
unless the surrounding medium be magnetic or diamagnetic.

If we substitute {or U its value in terms of 7 and €, and for
p its value in terms of k, we obtain the same equation (10) as we
arrived at by Poisson’s method.

The problem of induced magnetism, when considered with respect
to the relation between magnetic induction and magnetic force,
corresponds exactly with the problem of the conduction of electric
currents through heterogeneous media, as given in Art. 309.

The magnetic force is derived from the magnetic potential, pre-
cisely as the electric force is derived from the electric potential.

The magnetic induction is a quantity of the nature of a flux,
and satisfles the same conditions of continuity as the electric
current does.

In isotropic media the magnetic induction depends on the mag-
netic force in a manner which exactly corresponds with that in
which the electric current depends on the clectromotive force.

The specific magnetic inductive capacity in the one problem corre-
sponds to the specific conductivity in the other. Hence Thomson,
in his Theory of Induced Magnetism (Reprint, 1872, p. 484), has called
this quantity the permeability of the medium,

We are now prepared to consider the theory of induced magnetism
from what I conceive to be Faraday’s point of view.

When magnetic force acts on any medium, whether magnetic or
diamagnetic, or neutral, it produces within it a phenomenon called
Magnetic 1nduction.

Magnetic induction is a directed quantity of the nature of a flux,
and it satisfies the same conditions of continuity as electric currents
and other fluxes do.

In isotropic media the magnetic force and the magnetic induction
are in the same direction, and the magnetic induction is the product
of the magnetic foree into a quantity called the coefficient of
induction, which we have expressed by p.

In empty space the coeflicient of induction 1s unity. In bodies
capable of induced magnetization the coefficient of induction is
1+4 7k = pu, where « is the quantity already defined as the co-
efficient of induced magnetization.

429.] Let p, #” be the values of p on opposite sides of a surface

E 2%
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separating two media, then if 7, 7" are the potentials in the two
media, the magnetic forces towards the surface in the two media
14 av’

are —— and 7

The quantities of magnetic induction through the element of

AV’

surface 4§ are p%_dS and u P d8 in the two media respect-

I
ively reckoned towards 8.
Since the total flux towards 4.8 is zero,
av . ,dv
kay Tegr =0
But by the theory of the potential near a surface of density o,
v av’
Ty + W -+ 470 = 0.

Hence g(l—ﬁt)ﬁ—‘lwu:&

If x, is the ratio of the superficial magnetization to the normal

force in the first medium whose coeflicient is w, we have
’
4K, = “———,& -

Hence «; will be positive or negative according as p is greater
or less than p/. Ifweput p=4d7x+1 and =47« +1,
_ K — KI
Tamd 1

In this expression « and & are the coefficients of induced mag-
netization of the first and second medium deduced from experiments
made in air, and «; is the coeflicient of induced magnetization of
the first medium when surrounded by the second medium.

If & is greater than «x, then x, is negative, or the apparent
magnetization of the first medium is in the opposite direction from

Ky

the magnetizing force.

Thus, if a vessel containing a weak aqueous solution of a para-
magnetic salt of iron is suspended in a stronger solution of the
same salt, and acted on by a magnet, the vessel moves as if it
were magnetized tn the opposite direction from that in which a
magnet would set itself if suspended in the same place.

This may be explained by the hypothesis that the solution in
the vessel is really magnetized in the same direction as the mag-
netic force, but that the solution which surrounds the vessel is
magnetized more strongly in the same dircetion. Hence the vessel
is like a weak magnet placed between two strong ones all mag-
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netized in the same direction, so that opposite poles are in contact.
The north pole of the weak magnet points in the same direction
as those of the strong ones, but since it is in contact with the south
pole of a stronger magnet, there is an excess of south magnetism
in the neighbourhond of its mnorth pole, which causes the small
magnet to appear oppositely magnetized.

In some substances, however, the apparent magnetization is
negative even when they are suspended in what is called a vacuum.

If we assume « = 0 for a vacuum, it will be negative for these
substances. No substance, however, has been discovered for which

« has a negative value numerically greater than 4—1; , and therefore
for all known substances u is positive.

Substances for which x is negative, and therefore p less than
unity, are called Diamagnetic substances. Those for which « is
positive, and p greater than unity, are called Paramagnetic, Ferro-
magnetic, or simply magnetic, substances.

We shall consider the physical theory of the diamagnetic and
paramagnetic properties when we come to electromagnetism, Arts.
831-845.

430.] The mathematical theory of magnetie induction was first
given by Poisson *. The physical hypothesis on which he founded
his theory was that of two magnetic fluids, an hypothesis which
has the same mathematical advantages and physical difficulties
as the theory of two electric fluids. In order, however, to explain
the fact that, though a piece of soft iron can be magnetized by
induction, it cannot be charged with unequnal quantities of the
two kinds of magnetism, he supposes that the substance in general
is a non-conductor of these fluids, and that only certain small
portions of the substance contain the fluids under circumstances
in which they are free to obey the forces which act on them.
These small magnetic elements of the substance contain each pre-
cisely equal quantities of the two fluids, and within each element
the fluids move with perfect freedom, but the fluids can never pass
from one magnetic element to another.

The problem thercfore is of the same kind as that relating to
a number of small conductors of electricity disseminated through
a dielectric insulating medium. The conductors may be of any
form provided they are small and do not touch each other.

If they are elongated bodies all turmed in the same general

* Mémoires de U'Institut, 1824,
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direction, or if they are crowded more in one direction than another,
the medium, as Poisson himself shews, will not be isotropic. Poisson
therefore, to avoid useless intricacy, examines the case in which
each magnetic element is spherical, and the elements are dissem-
inated without regard to axes. He supposes that the whole volume
of all the magnetic elements in unit of volume of the substance
is Z.

‘We have already considered in Art. 314 the electric conductivity
of a medium in which small spheres of another medium are dis-
tributed.

If the conductivity of the medium is p,, and that of the spheres
iy, we have found that the conductivity of the composite system is

Qpy A ppy 24 (g —py) |

H=h 2py + pe— £ (pp—p4)

Putting gy = 1 and p, = oc, this becomes
142 k
iy &

This quantity p is the electric conductivity of a medium con-
sisting of perfectly conducting spheres disseminated through a
medium of conductivity unity, the aggregate volume of the spheres
in unit of volume being £.

The symbol u also represents the coeflicient of magnetie induction
of a medium, consisting of spheres for which the permeability is
infinite, disseminated through a medium for which it is unity.

The symbol £, which we shall call Poisson’s Magnetic Coefficient,
represents the ratio of the volume of the magnetic elements to the
whole volume of the substance.

The symbol « is known as Neumann’s Coefficient of Magnet-
ization by Induction. It is more convenient than Poisson’s,

The symbol u we shall call the Coefficient of Magnetic Induction.
Tts advantage is that it facilitates the trausformation of magnetic
problems into problems relating to electricily and heat.

The relations of these three symbols are as follows :

4 —1
P=—2, k=R,
47+ 3 p42
_p—1 _ 3k
= Tam ' _477(1—/«:),
1+2%
= — =4 1.
o =7’ " K+

If we put k = 32, the value given by Thalén’s * experiments on
* Recherches sur les Propriétés Magnétiques du fer, Nova Acta, Upsal, 1863.
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soft iron, we find 2 = 1§%. This, according to Poisson’s theory,
is the ratio of the volume of the magnetic molecules to the whole
volume of the iron. It is impossible to pack a space with equal
spheres so thut the ratio of their volume to the whole space shall
be so nearly unity, and it is exceedingly improbable that so large
a proportion of the volume of iron is occupied by solid molecules
whatever be their form, This is one reason why we must abandon
Poisson’s hypothesis. Others will be stated in Chapter VI. Of
course the value of Poisson’s mathematical investigations remains
unimpaired, as they do not rest on his hypothesis, but on the
experimental fact of induced magnetization.
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CHAPTER V.

PARTICULAR PROBLEMS IN MAGNETIC INDUCTION.

A Hollow Spherical Shell.

431.] TrE first example of the complete solution of a problem
in magnetic induetion was that given by Poisson for the case of
a hollow spherical shell acted on by any magnetic forces whatever.

For simplicity we shall suppose the origin of the magnetic forces
to be in the space outside the shell.

If 7 denotes the potential due to the external magnetic system,
we may expand / in a series of solid harmonics of the form

V==0C,8+C8r+8&ec+CS8; 7, n
where 7 18 the distance from the centre of the shell, §; is a surface
harmonic of order ¢, and C, is a coefficient.

This series will be convergent provided # is less than the distance
of the nearest magnet of the system which produces this potential.
Hence, for the hollow spherical shell and the space within it, this
expansion 1is convergent.

Let the external radius of the shell be 2, and the inner radius 2,,
and let the potential due to its induced magnelism be Q. The form
of the function & will in general be different in the hollow space,
in the substance of the shell, and in the space beyond. If we
expand these functions in harmonic series, then, confining our
attention to those terms which involve the surface harmonic S,
we shall find that if Q, is that which corresponds to the hollow
space within the shell, the expansion of Q; must be in positive har-
monies of the form 4, §;7%, because the potential must not become
infinite within the sphere whose radius is «;.

In the substance of the shell, where 7, lies between ¢, and a,,
the series may contain both posilive and negative powers of 7,

of the form 4,871 B, 8, r~6+D,

Outside the shell, where  is greater than a,, since the series
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must be convergent however great » may be, we must have only
negative powers of #, of the form
, By §;r+D,

The conditions which must be satisfied by the function Q are:
It must be (1) finite, and (2) continuous, and (3) must vanish at
an infinite distance, and it must (4) everywhere satisfy Laplace’s
equation.

On account of (1) B, = 0.

On account of (2) when r = 4,

(4y—Ady)a® 1 —B, =0, (2)
and when r = a,, '
(dy—4ds) @, %+ + By— By = 0. (3)

On account of (3) 4; = 0, and the condition (4) is satisfied
everywhere, since the functions are harmonie.

But, besides these, there are other conditions to be satisfied at
the inner and outer surface in virtue of equation (10), Art. 427.

At the inner surface where 7 = 4,

a2, 49, ar
—Z —_— = 4
(1+4mk) 7 dr +47ﬂ<dr 0, (4)
and at the outer surface where » = a,,
dQ, A, av .
—(14+4mk)——= i + = g —41r:<d—r=0. (5)

From these conditions we obtain the equations
(1 +47k) (4yaP 1 — (i 4+ 1) By) —id a2t 4 dmkiCia 241 =0, (6)
(144m) ((A,a,B ' -+ 1) B) + (i + 1) By+4nxiCia, 1=0; (7)

and if we put

1
N = Zir1, (8)

(14 4mx) 204+ 12+ (am02iG+1) (1— (%) )

Ay=—(@ma®ili+1) (1 (“—‘)M)M C, (9)

4, =—47rxz[:22+1+47rx(z+1)(1— “l) ]N c, (10)
By,=47nki(2¢4+1)a, N, C,, (11)
B, = 4mxi(2i4+1+4mk(+1) (0,54 —a % YN, C. (12)

These quantities being substituted in the harmonic expansions
give the part of the potential due to the magnetization of the shell.
The quantity N; is always positive, since 1+ 4w« can never be
negative. Hence A4, is always negative, or in other words, the
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action of the magnetized shell on a point within it is always op-
posed to that of the external magnetic force whether the shell be
paramagnetic or diamagnetic. The actual value of the resultant
potential within the shell is
(Ci+Al) Si 74.:
or (1+47x) (2¢4+1)2N,C 8,7 (13)

432.] When « is a large pumber, as it is in the case of soft iron,
then, unless the shell is very thin, the magnetic force within it
is but a small fraction of the external force.

In this way Sir W. Thomson has rendered his marine galvano-
meter independent of external magnetic force by enclosing it in
a tube of soft iron,

433.7 The case of greatest practical importance is that in which
= 1. In this case

N, = ! et (14)
9(1 4 21 —(-2
Cramgreins (1 -G))

A1:_2(4m)2(1_(;;))1\qq, TI

4,= E (1-()]me

,=—47nKk|3+ 87k —(;2) NG, b (15)

B,=127xa3N, C,,

By=47x(8+4+8mk) (2,2 —a®) N, (. J

The magnetic force within the hollow shell is in this case uniform
and equal to

0,44, = 9(1+47«k)

9(1+4mn)42(tmn2 (1 (al))

(16)

If we wish to determine x by measuring the magnetic foree
within a hollow shell and comparing it with the external magnetic
force, the best value of the thickness of the shell may be found
from the equation

23 9l+44mx
i T% an (17)
The magnetic force inside the shell is then half of its value outside.

Since, in the case of iron, x is a number between 20 and 30, the
thickness of the shell ought to be about the hundredth part of its
radius. This method is applicable only when the value of « is
large. When it is very small the value of 4; becomes insensible,
since it depends on the square of .
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For a nearly solid sphere with a very small spherical hollow,

2
A1=— 2(471'K) 01,
(3+47k)(3+8m«k)
477K
Azz—mq, e (18)
_ 4T 3 J
By = 3—+—4mc01a2'

The whole of this investigation might have been deduced directly
from that of conduection through a spherical shell, as given in
Art. 312, by putling 4, = (1 + 47«) %, in the expressions there given,
remembering that 4; and 4, in the problem of conduction are equi-
valent to € 4+ 4, and €, + 4, in the problem of magnetie induction.

434.] The corresponding solution in two dimensions is graphically
represented in Fig. X'V, at the end of this volume. The lines of
induction, which at a distance from the centre of the figure are
nearly horizontal, are represented as disturbed by a eylindrie rod
magnetized transversely and placed in its position of stable equi-
librium. The lines which eut this system at right angles represent
the equipotential surfaces, one of which is a cylinder. The large
dotted circle represents the section of a cylinder of a paramagnetic
substance, and the dotted horizontal straight lines within it, which
are continuous with the exiernal lines of induction, represent the
lines of induction within the substance. The dotted vertical lines
represent the internal equipotential surfaces, and are continuous
with the external system. It will be observed that the lines of
induction are drawn nearer together within the substance, and the
equipotential surfaces are separated farther apart by the paramag-
netie cylinder, which, in the language of Faraday, conducts the
lines of induction better than the surrounding medium.

If we consider the system of vertical lines as lines of induction,
and the horizontal system as equipotential surfaces, we have, in
the first place, the case of a cylinder magnetized transversely and
placed in the position of unstable equilibrium among the lines of
force, which it causes to diverge. In the second place, considering
the large dotted circle as the section of a diamagnetic eylinder,
the dotted straight lines within it, together with the lines external
to it, represent the effect of a diamagnetic substance in separating
the lines of induction and drawing together the equipotential
surfaces, such a substance being a worse conductor of magnetic
induction than the surrounding medium.
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Casc of a Sphere in whick the Coefficients of Magnetization are
Diifferent in Different Directions.

435.] Let a, B, y be the components of magnetic foree, and 4, B,
C those of the magnetization at any point, then the most general
linear relation between these quantities is given by the equations

4= ra+pB+ 07
B= ga+nB+7ry, (1)
C=peat gihyt+ 13y,
where the coefficients 7, p, ¢ are the nine cocflicients of magnet-
ization,

Let us now suppose that these are the conditions of magnet-
ization within a sphere of radius @, and that the magnetization at
every point of the substance is nniform and in the same direction,
having the components 4, B, C.

Let us also suppose that the external magnetizing force is also
uniform and parallel to one direction, and has for its components
X ¥, Z

The value of 7 is therefore

V=—(Xz+Yy+Z2), (2)

and that of Q" the potential of the magnetization outside the sphere 1s
3

= (do+By+ o) o (3)

The value of Q, the potential of the magnetization within the
sphere, is 4
Qz?(Ax+By+Cz). (4)

The actual potential within the sphere is ¥+ Q, 50 that we shall
have for the components of the magnetic force within the sphere

B=Y—-4xDB,
y = Z—4C.

o= X—4%nd,
|

Hence
QI+gmr)d+ $7p, B + $7¢, C=nX+p Y+ q,7,
§mg A+(1+5mr) B+ $7p C= g X+ Y+ p 2,
Lap, A+ $70B +(1+477)0 = p, X+ ¢ Y+ 1, 2.
Solving these equations, we find
4 =nr"X+p Y+ ¢/ 7 }

(6)

B =gy X+ 1y Y+ p/ Z,
C=p/ X+ q/ Y+ 152,

M
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where IV /= ry+ {7 (o3 — pp ot 17— Py 3s) +(§ m)2 0,
Dpl'=p—tm(pgs—mn)
U g= g =57 (paps— 41 1)
&e., .
where D) is the determinant of the eoeflicients on the right side of
equations (6), and £ that of the coefficients on the left.

The new system of coeflicients p’, ¢/, #* will be symmetrical only
when the system p, ¢, 7 is symmetrical, that is, when the co-
efficients of the form p are equal to the corresponding ones of
the form 4.

436.] The moment of the couple tending to turn the sphere about
the axis of z from y towards 2 is

L=4%4mna?(ZB—T1C)
=§ma {p/ L=/ Vi (ry —r) Y2+ X (92— p, X))} (9)
If we make
X=0, Y = Fcosé, Y = Fsiné,
this corresponds to a magnetic force # in the plane of yz, and

inclined to z at an angle 6. If we now turn the sphere while this
force remains constant the work done in turning the sphere will

(8)

be f 2"Ld6 in each complete revolution. But this is equal to
0 .
$aaF? (p)'—qy). (10)
Hence, in order that the revolving sphere may not become an
inexbaustible source of energy, p,"= ¢,", and similarly p,/= ¢,” and
p= g5
These conditions shew that in the original equations the coeffi-
cient of B in the third equation is equal to that of € in the second,
and so on. Hence, the system of equations is symmetrical, and the
equations become when referred to the principal axes of mag-
netization, ”
T lagmn 1
%y
1+ 577,
”3

B = T, (11)

- - 1—}-%7\‘7‘3

The moment of the couple tending to turn the sphere round the
axis of # is
R Tk SRS,
(14 §ary) (1 +gary)

L= %mﬁ

YZ. (12)
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In most cases the differences between the coeficients of magnet-
ization in different directions are very small, so that we may put
Ufi—é_:fr)_zﬁzsinze. (13)

This is the force tending to turn a crystalline sphere about the
axis of # from y towards z. It always tends to place the axis of
greatest magnetic coefficient (or least diamagnetic coefficient) parallel
to the line of magnetic force.

The corresponding case in two dimensions is represented in
Fig. XVI.

If we suppose the upper side of the figure to be towards the
north, the figure represents the lines of force and cquipotential
surfaces as disturbed by a transversely magnetized cylinder placed
with the north side eastwards. The resultant force tends to turn
the cylinder from east to north. The large dotted circle represents
a section of a cylinder of a crystalline substance which has a larger
coeflicient of induction along an axis from north-east to south-west
than along an axis from north-west to south-east. The dotted lines
within the circle represent the lines of induetion and the equipotential

L =4mad

surfaces, which in this case are not at right angles to each other.
The resultant force on the cylinder is evidently to turn it from east
to north.

437.] The case of an ellipsoid placed in a field of uniform and
parallel magnetic force has been solved in a very ingenious manner
by Poisson.

If 7 1s the potential at the point (#, ¥, 2), due to the gravitation

of a body of any form of uniform density p, then —%‘Z is the

potential of the magnetism of the same body if uniformly mag-
netized in the direction of « with the intensity 7 = p.

For the value of — gﬁm at any point is the excess of the value

of 7, the patential of the body, above 77, the value of the potential
when the body is moved — &z in the direction of z.

If we supposed the body shifted through the distance — 3z, and
its density changed from p to —p (that is to say, made of repulsive

instead of attractive matter,) then —

due to the two bodies.
Now consider any elementary portion of the body containing a
volume 32. Its quantity is pdv, and corresponding to it there is

jEV dz would be the potential
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an element of the shifted body whose quantity is —pév at a
distance —32. The effect of these two elements is equivalent to
that of a magnet of strength pdr and length 82. The intensity
of magnetization is found by dividing the magnetic moment of an
element by its volume. The result is p 3.

Hence — %7 5 is the magnetic potential of the body magnetized

d

with the intensity p 8z in the direction of z, and — a is that of

dz
the body magnetized with intensity p.

This potential may be also considered in another light. The
body was shifted through the distance —2z and made of density
—p. Throughout that part of space common to the body in its
two positions the density is zero, for, as far as attraction is con-
cerned, the two equal and opposite densities annihilate each other.
There remains therefore a shell of positive matter on one side and
of negative matter on the other, and we may regard the resultant
potential as due to these. The thickness of the shell at a point
where the normal drawn outwards makes an angle e with the axis
of & is 8 cos € and 1its density is p. The surface-density is therefore

pdzcose, and, in the case in which the potential is — LJZ the

2
surface-density is p cos e. de

In this way we can find the magnetic potential of any body
uniformly magnetized parallel to a given direction. Now if this
uniform magnetization is due to magnetic induction, the mag-
netizing force at all points within the body must also be uniform
and parallel.

This force consists of two parts, one duc to external causes, and
the other due to the magnetization of the body. If therefore the
external magnetic force is uniform and parallel, the magnetic force
due to the magnetization must also be uniform and parallel for
all points within the body.

Hence, in order that this method may lead to a solution of the

problem of magnetic induction, av must be a linear function of

dz
the coordinates #, #, z within the body, and therefore # must be
a quadratic function of the coordinates.

Now the only cases with which we are acquainted in which 7
is a quadratic function of the coordinates within the body are those
in which the body is bounded by a complete surface of the second
degree, and the only case in which such a body is of finite dimen-
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slons is when it is an ellipsoid. We shall therefore apply the
method to the case of an ellipsoid.

.772 yZ 2

Let, +% + = =1 (1)
be the equation of the elhpsmd, and let &, denote the definite integral
. B

2y (2 Z 2y (@)

0 (@747 (02 +¢7) (¢ + ¢7)

Then if we make
ad, _ d®,

L_27raécd( 2y M= 27ra6cd(b2) N= Zwaécm, (3)

the value of the potential within the ellipsoid will be
V, =— g(L 2% + My? + N ¢2)+ const. (4)

If the ellipsoid is magnetized with uniform intensity 7 in &
direction making angles whose cosines are /, m, » with the axes
of #, 9, 2, so that the components of magnetization are

A4=11 B =1Im, C=1In,
the potential due to this magnetization within the ellipsoid will be
Q =—1(Liz+Mmy+ Nuz) (5)

If the external magnetizing force is §, and if its components

are a, 3, v, its potential will be
' V=Xze+Yy+Zo (6)

The components of the actual magnetizing force at any point

within the body are therefore
X—-41L, Y—-B M, Z—CAN. (7)

The most general relations between the magnetization and the
magnetizing force are given by three linear equations, involving
nine coefficients. It is necessary, however, in order to fulfil the
condition of the conservation of energy, that in the case of magnetic
induction three of these should be equal respectively to other three,
so that we should have

A=K, (X—4dD+ K, (Y—BM )+ K',(Z—CN),
B=K;(X—4dD+K ,(Y—BM)Y+ K’ (Z—CN), (8)
C=K,(X—AL)4+ K\ (Y—BM)+K 4 (Z—-CN).

From these equations we may determine 4, B and C in terms
of X, ¥, Z, and this will give the most general solution of the
problem.

The potential cutside the ellipsoid will then be that due to the

* See Thomson and Tait's Nutural Philosophy, § 522.

IRIS - LILLIAD - Université Lille 1



438.] ELLIPSOID. 65

magnetization of the ellipsoid together with that due to the external
magnetic force.
438.] The only case of practical importance is that in which

Ky =Ky =« = 0. (9)
K; I
‘We have then 4= —_X,
14« ¥/ l
B = 1+K2MK " (10)
—_fs
C = TN Z. |
If the ellipsoid has two axes equal, and is of the planetary or
flattened form, b — a , (1)
V1=t
/1 _ .2
Z}—_—47r(12 1Sisin—1e), ]
¢ ¢ (12)
JS1—et . B 1—e2 |
M—_—N=2-n'( pram le— o )
1f the ellipsoid is of the ovary or elongated form
a=1b=41—¢%; (13)
1—eg? 14
L=2 W(e"’——ze%2 gl—e)’ }

f (14)
= ar (1) (5l 1) |
In the case of a sphere, when ¢ = 0,
IL=M=N=4nx (15)
In the case of a very flattened planetoid Z becomes in the limit
equal to 4 7, and M and N become =? Z .

In the case of a very elongated ovoid L and A approximate
to the value 2 %, while & approximates to the form

a? e
4m (log Ea— — 1)
and vanishes when ¢ = 1.

Tt appears from these results that—

(1) When «, the coefficient of magnetization, is very small,
whether positive or negative, the induced magnetization is nearly
equal to the magnetizing force multiplied by «, and is almost
independent of the form of the body.

VOL. 1L ¥
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(2) When « is a large positive quantity, the magnetization depends
principally on the form of the body, and is almost independent of
the precise value of «, except in the case of a longitudinal force
acting on an ovoid so elongated that N« is a small quantity though
x is large.

(3) If the value of x could be negative and equal to ‘Il— we
™

should have an infinite value of the magnetization in the case of
a magnetizing force acting normally to a flat plate or disk. The
absurdity of this result confirms what we suid in Art. 428.

Hence, experiments to determine the value of « may be made
on bodies of any form provided « is very small, as it is in the case
of all diamagnetic bodies, and all magnetic bodies’ except ironm,
nickel, and cobalt.

If, however, as in the case of iron, « is a large number, experi-
ments made on spheres or flattened figures are not suitable to
determine «x; for instance, in the case of a sphere the ratio of the
magnetization to the magnetizing foree is as 1 to 4.22 if « = 30,
ag it is in some kinds of iron, and if « were infinite the ratio would
be as 1 to 4.19, so that a very small error in the determination
of the magnetization would introduce a very large one in the
value of «.

But if we make use of a piece of iron in the form of a very
elongated ovoid, then, as long as N« is of moderate value com-
pared with unity, we may deduce the value of « from a determination
of the magnetization, and the smaller the value of & the more
accurate will be the value of «.

In fact, if ¥« be made small enough, a small error in the value
of N itself will not introduce much error, so that we may use
any elongated body, such as a wire or long rod, instead of an
ovoid.

We must remember, however, that it is only when the product
N« is small compared with unity that this substitution is allowable,
In fact the distribution of magnetism on a long cylinder with flat
ends does not resemble that on a long ovoid, for the free mag-
netism is very much concentrated towards the ends of the cylinder,
whereas it varies directly as the distance from the equator in the
case of the ovoid.

The distribution of electricity on a cylinder, however, is really
comparable with that on an ovoid, as we have already seen,
Art. 152.
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These results also enable us to understand why the magnetic
moment of a permanent magnet can be made so much greater when
the magnet has an elongated form. If we were to magnetize a
disk with intensity / in a direction normal to its surface, and then
leave it to itself, the interior particles would experience a constant
demaguetizing force equal to 4 w7, and this, if not sufficient of
itself to destroy part of the magnetization, would socon do so if
aided by vibrations or changes of temperature.

If we were to magnetize a cylinder transversely the demagnet-
izing force would be only 2w 1.

If the magnet were a sphere the demagnetizing force would
be 4« L '

In a disk magnetized transverscly the demagmetizing force is

w”%[, and in an elongated ovoid magnetized longitudinally it
is least of all, being 4= j—: I log %l .

Hence an elongated magnet is less likely to lose its magnetism
than a shortl thick one.

The moment of the force acting on an ellipsoid having different
magnetic coefficients for the three axes which tends to turn it about
the axis of #, is
Kg— Ky + Ky k3 (M —1V)
tmabe(BZ—CY) = §nabe¥YZ (1= I (1= ) .

Hence, if x, and x; are small, this force will depend principally
on the crystalline quality of the body and not on its shape, pro-
vided its dimensions are not very unequal, but if x, and g are
considerable, as in the case of iron, the force will depend principally
on the shape of the body, and it will turn so as to set its longer
axis parallel to the lines of force.

If a sufficiently strong, yet uniform, field of magnetic force could
be obtained, an elongated isotropic diamagnetic body would also
set itself with its longest dimension parallel to the lines of magnetic
force.

439.] The question of the distribution of the magnetization of
an ellipsoid of revolution under the action of any magnetic forces
has been investigated by J. Neumann *. Kirchhoff + has extended
the method to the case of a cylinder of infinite length acted on by
any force.

* (Crelle, bd. xxxvii (1848).
+ Crelle, bd. xlviii (1864).

F 2
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68 MAGNETIC PROBLEMS. [439.

Green, in the 17th section of his Essay, has given an invest-
igation of the distribution of magnetism in a cylinder of finite
length acted on by a uniform external force parallel to its axis.
Though some of the steps of this investigation are not very
rigorous, it is probable that the result represents roughly the
actual maguetization in this most important case. It certainly
expresses very fairly the transition from the case of a eylinder
for which « is a large number to that in which it 1s very small,
but it fails entirely in the case in which « is negative, as in
diamagnetic substances.

Green finds that the linear density of free magnetism at a
distance # from the middle of a cylinder whose radius is a and
whose length is 2/, is

g.l' rx

ee g a
A=WKXpLZﬁ1

€* +e °

where p Is a numerical quantity to be found from the equation

0.231863—2log,p+2p =

=k p? )
The following are a few of the corresponding values of p and «.
K s K r
o 0 11.802 0.07
336.4 0.01 9.137 0.08
62.02 0.02 7.517 0.09
48.416 0.03 6.319 0.10
29.475 0.04 0.1427 1.00
20.185 0.05 0.0002 10.00
14.794 0.06 0.0000 o
negative imaginary.

When the length of the cylinder is great compared with its
radius, the whole quantity of free magnetism on either side of
the middle of the cylinder is, as it ought to be,

M=n?axX.

Of this 4 p M is on the flat end of the cylinder, and the distance

of the centre of gravity of the whole quantity M from the end

of the cylinder is 7,
P

‘When « is very small 2 is large, and nearly the whale free
magunetism is on the ends of the eylinder. As « increases p
diminishes, and the free magnetism is spread over a greater distance
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from the ends. When « is infinite the free magnetism at any
point of the ecylinder is simply proportional to its distance from
the middle point, the distribution being similar to that of free
electricity on a conductor in a field of uniform force.

440.1 In all substances except iron, nickel, and cobalt, the co-
efficient of magnetization is so small that the induced magnetization
of the body produces only a very slight alteration of the forces in
the magnetic fleld. We may therefore assume, as a first approx-
imation, that the actual magnetic force within the body is the same
as if the body had not been there. The superficial magnetization

a b av
K v’ where v
is the rate of increase of the magnetic potential due to the external

of the body is therefore, as a first approximation,

magnet along a normal to the surface drawn inwards. If we
now caleulate the potential due to this superficial distribution, we
may use 1t in proceeding to a second approximation.

To tind the mechanical energy due to the distribution of mag-
netism on this first approximation we must find the surface-integral

n=[[cr@as

taken over the whole surface of the body. Now we have shewn in
Art. 100 that this is equal to the volume-integral

='—f[/ av J?z dVZ)

taken through the whole space occupled by the body, or, if R is the
resultant magnetic force,

E = —U/I/K B2 dzdyde.

Now since the work done by the magnetic force on the body
during a displacement 3z 1s X 82 where X is the mechanical force
in the direction of z, and since

fXBw-}-E’ = constant,

A8 4 [[] s, _fydR2
%_%ﬂﬁﬁh@m_jxd

- dzdydz,

dredydz

which shews that the force acting on the body is as if every part
of it tended to move from places where £% is less to places where
it is greater with a force which on every unit of volume is

d.R?

X ——— =

dx
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If « is negative, as in diamagnetic bodies, this force is, as Faraday
first shewed, from stronger to weaker parts of the magnetic field.
Most of the actions observed in the case of diamagnetic bodies
depend on this property.

Skip’s Magnetism.

441.] Almost every part of magnetic science finds its use in
navigation. The directive action of the earth’s magnetism on the
compass needle is the only method of ascertaining the ship’s course
when the sun and stars are hid. The declination of the needle from
the true meridian seemed at first to be a hindrance to the appli-
cation of the compass to navigation, but after this difficulty had
been overcome by the construction of magnetic charts it appeared
likely that the declination itself would assist the mariner in de-
termining his ship’s place.

The greatest difficulty in navigation had always been to ascertain
the longitude; but since the declination i1s different at different
points on the same parallel of latitude, an observation of the de-
clination together with a knowledge of the latitude would enable
the mariner to find his position on the magnetic chart.

Bat in recent times iron is so largely used in the construction of
ships that it has become impossible to use the compass at all without
taking into account the action of the ship, as a magnetic body,
on the needle. '

To determine the distribution of magnetism in a mass of iron
of any form under the influence of the earth’s magnetic force,
even though not subjected to mechanical strain or other disturb-
ances, is, as we have seen, a very difficult problem.

In this case, however, the problem is simplified by the following
considerations.

The compass is supposed to he placed with its centre at a fixed
point of the ship, and so far from any iron that the magnetism
of the needle does not induce any perceptible magnetism in the
ship. The size of the compass needle is supposed so small that
we may regard the magnetic force at any point of the needle as
the same.

The iron of the ship is supposed to be of two kinds only.

(1) Hard iron, magnetized in a eonstant manner.

(2) Soft iron, the magnetization of which is induced by the earth
or other magnets.

In strictness we must admit that the hardest iron is not only
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capable of induction but that it may lose part of its so-called
permanent magnetization in various ways.

The softest iron is capable of retaining what is called residual
magnetization. The actual properties of iron cannot be accurately
represented by supposing it eompounded of the hard iron and the
goft iron above defined. But it has been found that when a ship
is acted on only by the earth’s magnetic force, and not subjected
to any extraordinary stress of weather, the supposition that the
magnetism of the ship is due partly to permanent magnetization
and partly to induction leads to sufficiently aecurate results when
applied to the correction of the compass.

The equations on which the theory of the variation of the compass
is founded were given by Poisson in the fifth volume of the
Mémoires de I’ Institut, p. 533 (1824).

The only assumption relative to indueed magnetism which is
involved in these equations is, that if a magnetie force X due ta
external magnetism produces in the iron of the ship an indunced
magnetization, and if this induced magnetization exerts on the
compass needle a disturbing force whose components are X*, ¥, Z7°,
then, if the external magnetic force is altered in a given ratio,
the components of the disturbing force will be altered in the
same ratio.

It 1s true that when the magnetic force acting on iron is very
great the induced magnetization is no longer proportional to the
external magnetic force, but this want of proportionality is quite
insensible for magnetic forces of the magnitude of those due to the
earth’s action.

Hence, in practice we may assume that if a magmnetic force
whose value is unity produces through the intervention of the iron
of the ship a disturbing force at the compass needle whose com-
ponents are a in the direction of 2, 4 in that of , and g in that of ,
the components of the disturbing force due to a force X in the
direction of z will be 2 X, dX, and g X.

If therefore we assume axes fixed in the ship, so that # is towards
the ship’s head, y to the starboard side, and z towards the keel,
and if X, ¥, Z represent the components of the earth’s magnetic
foree in these directions, and X’, ¥/, Z’ the eomponents of the
combined magnetic force of the earth and ship on the compass
needle, X = X+oX+bY4c Z+ P,

Y=Y+dXt+e¥Y+ fZ+Q, (1)
7' =Z 4+gX+hY+ kZ+ R
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72 MAGNETIC PROBLEMS, [441.

" In these equations #, 4, ¢, 4, ¢, f, 9, £, £ are nine constant co-
efficients depending on the amount, the arrangement, and the
capacity for induction of the soft iron of the ship.

P, @, and R are constant quantities depending on the permanent
magnetization of the ship.

It 1s evident that these equations arc sufficiently general if
magnetic induction is a linear function of magnetic force, for they
are neither more nor less than the most general expression of a
vector as a linear function of another vector.

It may also be shewn that they are not too general, for, by a
proper arrangement of iron, any one of the coeflicients may be
made to vary independently of the others.

Thus, a long thin rod of iron under the action of a longitudinal
magnetic force acquires poles, the strength of each of which is
numerically equal to the cross section of the rod multiplied by
the magnetizing force and by the coefficient of induced magnet-
ization. A magnetic force transverse to the rod produces a much
feebler magnetization, the effect of which is almost insensible at
a distance of a few diameters.

If a long iron rod be placed fore and aft with one end at a
distance # from the compass ncedle, measured towards the ship’s
head, then, if the section of the rod is 4, and its coefficient of
magnetization «, the strength of the pole will be 4xX, and, if
A = aTxZ, the force exerted by this pole on the compass needle
will be e X. The rod may be supposed so long that the effect of
the other pole on the compass may be neglected.

We have thus obtained the means of giving any required value
to the coeflicient a.

If we place another rod of scetion B with one extremity at the
same point, distant # from the compass toward the head of the
vessel, and extending to starboard to such a distance that the
distant pole produces no sensible effect on the compass, the dis-
turbing force due to this rod will be in the direction of z, and

2

equal to % 1—7 orif B = , the force will be & 7.

This rod therefore mtroduoes the coefficient &.

A third rod extending downwards from the same point will
introduce the coefficient c.

The coeflicients &, ¢, /" may be produced by three rods extending
to head, to starboard, and downward from a point to starboard of
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the compass, and g, £, £ by three rods in parallel directions from
a point below the compass.

Hence each of the nine coefficients can be separately varied by
means of iron rods properly placed.

The quantities P, §), £ are simply the components of the forece
on the compass arising from the permanent magnetization of the
ship together with that part of the induced magnetization which
is due to the action of this permanent magnetization.

A complete discussion of the equations (1), and of the relation
between the true magnetic course of the ship and the course as
indicated by the compass, is given by Mr. Archibald Smith in the
Admiralty Manual of the Deviation of the Compass.

A valuable graphic method of investigating the problem is there
given. Taking a fixed point as origin, a line is drawn from this
point representing in direction and magnitude the horizontal part
of the actual magnetic force on the compass-needle. As the ship
is swung round so as to bring her head into different azimuths
In succession, the extremity of this line describes a curve, each
point of which corresponds to a particular azimuth.

Such a curve, by means of which the direction and magnitude of
the force on the compass is given in terms of the magnetic course
of the ship, is called a Dygogram.

There are two varieties of the Dygogram. In the first, the curve
is traced on a plane fixed in space as the ship turns round. In
the second kind, the curve is traced on a plane fixed with respect
to the ship. .

The dygogram of the first kind 1s the Limagon of Pasecal, that
of the second kind is an ellipse. For the construction and use of
these curves, and for many theorems as interesting to the mathe-
matician as they are important to the navigator, the reader is
referred to the Admiralty Manual of the Deviation of the Compass.
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CHAPTER VL

WEBER'S THEORY OF INDUCED MAGNETISM.

442.] Wz have seen that Poisson supposes the magnetization of
iron to consist in a separation of the magnetic fluids within each
magnetic molecule. If we wish to avoid the assumption of the
existence of magnetic fluids, we may state the same theory in
another form, by saying that each molecule of the iron, when the
magnetizing force acts on it, becomes a magnet.

Weber’s theory differs from this in assuming that the molecules
of the iron are always magnets, even before the application of
the magnetizing force, but that in ordinary iron the magnetic
axes of the molecules are turned indifferently in every direction,
so that the iron as a whole exhibits no magnetic properties.

When a magnetic force acts on the iron it tends to turn the
axes of the molecules all in one direetion, and so to cause the iron,
as a whole, to become a magnet.”

If the axes of all the molecules were set parallel to each other,
the iron would exhibit the greatest intensity of magnetization of
which it is capable. Ilence Weber’s theory implies the existence
of a limiting intensity of magnetization, and the experimental
evidence that such a limit exists is therefore necessary to the
theory. Experiments shewing an approach to a limiting value of
magnetization have been made by Joule * and by J. Miiller .

The experiments of Beetz] on electrotype iron deposited under
the action of magnetic force furnish the most complete evidence
of this limit,—

A silver wire was varnished, and a very narrow line on the

* Annals of Electricity, iv. p. 131, 1839 ; Phil, Mag. [4] ii. p.316.
+ Pogg., Ann. Ixxix. p. 837, 1850.
1 Pogg. exi. 1860.
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metal was laid bare by making a fine longitudinal scratch on the
varnish, The wire was then immersed in a solution of a salt of
iron, and placed in a magnetic field with the seratch in the direction
of a line of magnetic force. By making the wire the cathode of
an electric current through the solution, iron was deposited on
the narrow exposed surface of the wire, molecule by molecule. The
filament of iron thus formed was then examined magnetically. Its
magnetic moment was found to be very great for so small a mass
of iron, and when a powerful magnetizing force was made to act
in the same direction the increase of temporary magnetization was
" found to be very small, and the permanent magnetization was not
altered. A magnetizing force in the reverse direction at once
reduced the filament to the condition of iron magnetized in the
ordinary way.

Weber’s theory, which supposes that in this case the magnetizing
force placed the axis of each molecule in the same direction during
the instant of its deposition, agrees very well with what is
observed.

Beetz found that when the electrolysis is continued under the
action of the magnetizing force the intensity of magnetization
of the subsequently deposited iron diminishes. The axes of the
molecules are probably deflected from the line of magnetizing
force when they are being laid down side by side with the mole-
cules already deposited, so that an approximation to parallelism
can be obtained only in the case of a very thin filament of iron.

If, as Weber supposes, the molecules of iron are already magnets,
any magnetic force sufficient to render their axes parallel as they
are electrolytically deposited will be sufficient to produce the highest
intensity of magnetization in the deposited filament.

If, on the other hand, the molecules of iron are not magnets,
but are only capable of magnetization, the magnetization of the
deposited filament will depend on the magnetizing force in the
same way in which that of soft iron in general depends on
it. The experiments of Beetz leave no room for the latter hy-
pothesis,

443.] We shall now assume, with Weber, that in every unit of
volume of the iron there are » magnetic molecules, and that the
magnetic moment of each is m. If the axzes of all the molecules
were placed parallel to one another, the magnetic moment of the
unit of volume would be

M= nm,
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and this would be the greatest intensity of magnetization of which
the iron is capable.

In the unmagnetized state of ordinary iron Weber supposes the
axes of its molecules to be placed indiflerently in all direetions.

To express this, we may suppose a sphere to be described, and
a radius drawn from the centre parallel to the direction of the axis
of each of the # molecules. The distribution of the extremities of
these radii will express that of the axes of the molecnles. In
the case of ordinary iron these # points are equally distributed
over every part of the surface of the sphere, so that the number
of molecules whose axes make an angle less than a with the axis
of z 1s 7—27' (1— cos a),
and the number of molecules whose axes make angles with that
of r, between a and a+ da is therefore

n .
—sinada.
2

This is the arrangement of the molecules in a piece of iron which
has never been magnetized.

Let us now suppose that a magnetic forece X is made to act
on the iron in the direction of the axis of 2, and let us consider
a molecule whose axis was originally inclined a to the axis of @.

If this molecule 1s perfectly free to turm, it will place itself with
its axis parallel to the axis of #, and if all the molecules did so,
the very slightest magnetizing force would be found sufficient
to develope the very highest degree of maguetization. This, how-
ever, 1s not the case.

The molecules do not turn with their axes parallel to x, and
this is either because each molecule is acted on by a force tending
to preserve it in its original direction, or because an equivalent
effect is produced by the mutual action of the entire system of
molecules.

Weber adopts the former of these suppositions as the simplest,
and supposes that each molecule, when deflected, tends to return
to its original position with a force which Is the same as that
which a magnetic force 2, acting in the original direction of its
axis, would produce.

The position which the axis actually assumes is therefore in the
dircetion of the resultant of X and 7.

Let APB represent a section of a sphere whose radius represents,
on a certain scale, the force D.
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Let the radius OF be parallel to the axis of a particular molecule
in its original position.

Let SO represent on the same scale the magnetizing force X
which is supposed to act from § towards 0. Then, if the molecule
is acted on by the force X in the direction §0, and by a force
D in a direction parallel to 02, the original direction of its axis,
its axis will set itself in the direction SP, that of the resultant
of X and D.

Since the axes of the molecules are originally in all directions,
P may be at any point of the sphere indifferently. In Fig. 5, in
which X is less than ), §P, the final position of the axis, may be
in any direction whatever, but not indifferently, for more of the
molecules will have their axes turned towards 4 than towards 5.
In Fig. 6, in which X is greater than 2, the axes of the molecules
will be all econfined within the cone S77” touching tie sphere.

Fig. 5. Fig. 6.

Hence there are two different cases according as X is less or
greater than 0.
Let a = AOP, the original inclination of the axis of a molecule
to the axis of ».
8 = ASP, the inclination of the axis when deflected by
the force X.
B = SP0, the angle of deflexion.
80 = X, the magnetizing force.
OP = D, the force tending towards the original position.
8P = R, the resultant of X and D.
m = magnetic moment of the molecule.
Then the moment of the statical couple due to X, tending to
diminish the angle 4, is

ml = mX sin 0,
and the moment of the conple due to D, tending to increase 6, is
m L, = m.D sin B.
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Equating these values, and remembering that 8 = a—0, we find
_ _Dsina (1)
tan g = X+Dcosa
to determine the direction of the axis after deflexion.

We have next to find the intensity of magnetization produced
in the mass by the force X, and for this purpose we must resolve
the magnetic moment of every molecule in the direction of #, and
add all these resolved parts.

The resolved part of the moment of a molecule in the direction
of z 18 m cos 0.

The number of molecules whose original inclinations lay between
aand a+da is n .,

Zfina da,
We have therefore to integrate
- " .
I:/; @;cosﬂsinada, (2)

remembering that 6 is a function of a.
We may express both 8 and a in terms of R, and the expression
to be integrated becomes
mn

Ty B+ X2 D) dE, (3)
the general integral of which is
mel . s 2
m(ﬁ +3X2-3D%)+C (4)

In the first case, that in which X is less than 7, the limits of
integration are £ =D+ X and B = 0D—X. In the second case,
in which X is greater than J), the limits are # = X+ 0 and
R=X-D.

When X is less than D, I= g %X (5)
When X is equal to D, I = gmn (8)

. 102,
‘When X is greater than D, I =mn (1 —3 )X—z) ; (7)
and when X becomes infinite I = mn. (8)

According to this form of the theory, which is that adopted
by Weber*, as the magnetizing force increases from 0 to 0, the

* There i8 some mistake in the formula given by Weber (Trans. Acad. Sazx. i.
p. 572 (1852), or Pogg., Ann. lxxxvii. p. 167 (1852)) as the reault of this integration,
the stopa of which are not given by him. His formula is

X X+ X2 D+ g Dt
VXD X XD D

I=mn
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magnetization increases in the same proportion. When the mag-
netizing force attains the value 7, the magnetization is two-thirds
of its limiting value. When the magnetizing force is further

increased, the magnetization, instead of increasing indefinitely,
tends towards a finife Lmit,

7 ——

| e

| i

Voo

° = 2D E() i)
Fig. 7.

The law of magnetization is expressed in Fig. 7, where the mag-
netizing force is reckoned from O towards the right and the mag-
netization is expressed by the vertical ordinates. Weber’'s own
experiments give results in satisfactory accordance with this law.
It is probable, however, that the value of D is not the same for
all the molecules of the same piece of iron, so that the transition
from the straight line from O to E to the curve beyond & may not
be s0 abrupt as is here represented.

444.] The theory in this form gives no account of the residual
magnetization which is found to exist after the magnetizing force
1s removed. I have therefore thought it desirable to examine the
results of making a further assumption relating to the conditions
under which the position of equilibrium of a molecule may be
permanently altered.

Let us suppose that the axis of a magnetie molecule, if deflected
through any angle 8 less than fg,, will return to its original
position when the deflecting force is removed, but that if the
deflexion 3 exceeds 8,, then, when the deflecting force is removed,
the axis will not return to its original position, but will be per-
maunently deflected through an angle 8— 8,, which may be called
the permanent ses of the molecule.

This assumption with respect to the law of molecular deflexion
is not to be regarded as founded on any exact knowledge of the
intimate structure of bodies, but is adopted, in our ignorance of
the true state of the case, as an assistance to the imagination in
following out the speculation suggested by Weber.

Let L = Dsin g, (9)
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then, if the moment of the couple acting on a molecule is less than
mZ, there will e no permanent deflexion, but if it exceeds m L
there will be a permanent change of the position of equilibrium.

To trace the results of this supposition, describe a sphere whose
centre 1s O and radius OL = L.

As long as X is less than L everything will be the same. as
in the case already considered, but as soon as X exceeds Z it will
begin to produce a permanent deflexion of some of the molecules.

Let us take the case of Fig. 8, in which X is greater than £
but less than ). Through § as vertex draw a double cone touching
the sphere L. Let this cone meet the sphere ) in # and @. Then
if the axis of a molecule in its original position lies between 04
and OP; or between OB and 0Q, it will be deflected through an
angle less than 3,, and will not be permanently deflected. But if

Fig. B. Fig. 9.

the axis of the molecule lies originally between OP and 0@, then
a couple whose moment is greater than Z will act upon it and
will deflect i1t into the position §P, and when the force X ceases
to act it will not resume its original direction, but will be per-
manently set in the direction OP.

Liet us put

L = Xsinf, when 6 = PS4 or @SB,
then all those molecules whose axes, on the former hypotheses,
would have values of 8 between 6, and w— 6, will be made to have
the value 6, during the action of the force X.

During the action of the force X, therefore, those molecules
whose axes when deflected lie within either sheet of the double
cone whose semivertical angle is 6, will be arranged as in the
former case, but all those whose axes on the former theory would
lie outside of these sheets will be permanently deflected, so that
their axes will form a dense fringe round that sheet of the cone
which lies towards 4.
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As X increases, the number of molecules belonging to the cone
about B continually diminishes, and when X becomes equal to D
all the molecules have been wrenched out of their former positions
of equilibrium, and have been forced into the fringe of the cone
round 4, so that when X becomes greater than 2 all the molecules
form part of the cone round 4 or of its fringe.

When the force X is removed, then in the case in which X is
less than L everything returns to its primitive state. When X
is between L and D then there is a cone round A-whose angle

40P = 00 +ﬁ0}
and another cone round B whose angle

BOQ = 6y — By -
Within these cones the axes of the molecules are distributed
uniformly. But all the molecules, the original direction of whose
axes lay outside of both these cones, have been wrenched from their
primitive positions and form a fringe round the cone about 4.

If X is greater than /), then the cone round B is completely

dispersed, and all the molecules which formed it are converted into
the fringe round 4, and are inclined at the angle 6,4 ;.
" 445.] Treating this case in the same way as before, we find
for the intensity of the temporary magnetization during the action
of the force X, which is supposed to act on iron which bas never
before becn magnetized,

. , 5 X

When X is less than Z, 1= EM:Dﬂ

When X is equal to Z r=2ul.
’ 37 D

‘When X is between L and D,

TR SO ILVARY S IVE S}

When X is equal to D,
23
I= M{ +50- D2)}'

When X is greater than 2,

1X 1 1D (-1 J/X2] . .
I= M{ sp T2 ext extn T 6X2D (ZX —3XD+1L
When X is 1nﬁm"ce, I=M.

When X is less than Z the magnetization follows the former
law, and is proportional to the magmetizing force. As soon as X
exceeds I the magnetization assumes a more rapid rate of increase

VOL. 11, G
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on account of the molecules beginning to be transferred from the
one cone to the other. This rapid increase, however, soon comes
to an end as the number of molecules forming the negative cone
diminishes, and at last the magnetization reaches the limiting
value M.

If we were to assume that the values of Z and of D are different
for different molecules, we should obtain a result in which the
different stages of magnetization are not so distinetly marked.

The residual magnetization, I, produced by the magnetizing force
X, and cbserved after the force has been removed, is as follows:

‘When X is less than Z, No residual magnetization.

‘When X is between L and D,

, L2 L?
I=M(l_ﬁ)(1_ﬁ)'

When X is equal to 7,
, LZ 2

When X is greater than D,
, 1 I2 172 72 32
I—zl‘f{l—rfﬂ/‘—ﬁ\/‘—ﬁ} '

‘When X is infinite,
, 1 LZ 2
]_ZM{H"\/I—FE} .

If we make
M = 1000, L =3, D=5,

we find the following values of the temporary and the residual
magnetization :—

Magnetizing Temporary Residunal
Force. Magnetization. Magnetization.
X I 1’
0 0 0
1 133 0
2 2067 0
3 400 0
4 729 280
5 837 410
6 864 485
7 882 537
8 897 574
0 1000 810
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These results are laid down in Fig. 10,

Maximum  Mognelization

——— .

Mognelization
;’Z-waumﬂu tdual Magnefization

,u,umlim

Azynetizalion

0
& 5 [ 7 8 9 1o
J{ngnetizin] Jorce
Fig. 10.

The curve of temporary magnetization is at first a straight line
from X =0 to X = L. It then rises more rapidly till X = D,
and as X increases it approaches its horizontal asymptote.

The curve of residual magnetization begins when X = Z, and
approaches an asymptote at a distance = .81.M.

It must be remembered that the residual magnetism thus found
corresponds to the case in whieh, when the external force is removed,
there is no demagnetizing force arising from the distribution of
magnetism in the body itself. The calculations are thercfore
applicable only to very elongated bodies magnetized longitudinally.
In the case of short, thick bodies the residual magnetism will be
diminished by the reaction of the free magnetism in the same
way as if an external reversed magnetizing force were made to
act upon it.

446.] The scientific value of a theory of this kind, in which we
make so0 many assumptions, and introduce so many adjustable
constants, cannot be estimated merely by its numerical agreement
with certain sets of experiments. If it has any value it is because
it enables us to form a mental image of what takes place in a
piece of iron during magnetization. To test the theory, we shall
apply it to the case in which a piece of iron, after being subjected
to a magnetizing foree X,, is again subjected to a magnetizing
force X;.

If the new force X, acts in the same direction in which X acted,
which we shall call the positive direction, then, if X, is less than
&X,, it will produce no permanent set of the molecules, and when
X, is removed the residual magnetization will be the same as

G2
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that produced by X,. If X, is greater than X, then it will produce
exuctly the same effect as if X had not acted.

But let us suppose X; to act in the negative direction, and let us
suppose X, = Lcosecd;, and X, =—Lcosech,.

As X, increases numerically, 6; diminishes. The first molecules
on which X, will produce a permanent deflexion are those which
form the fringe of the cone round 4, and these have an inclination
when undeflected of 0+ ;.

As soon as 6, —f3, becomes less than 6,4 8, the process of de-
magnetization will commence. Since, at this instant, 6, = 6,4 23,,
X, the force required to begin the demagnetizalion, is less than
X,, the force which produced the magnetization.

If the value of D and of L were the same for all the molecules,
the slightest increase of XX, would wrench the whole of the fringe
of molecules whose axes have the inclination 8,4+ 3, into a position
in which their axes are inclined 6, + 3, to the negative axis 05,

Though the demagnetization does not take place in a manner
so sudden as this, it takes place so rapidly as to afford some
confirmation of this mode of explaining the process.

Let us now suppose that by giving a proper value to the reverse
force X, we bave exactly demagnetized the piece of iron.

The axes of the molecules will not now be arranged indiffer-
ently in all directions, as in a piece of iron which has never been
magnetized, but will form three groups.

(1) Within a cone of semiangle 6,— g, surrounding the positive
pole, the axes of the molecules remain in their primitive positions.

(2) The same is the case within a cone of semiangle 6,— 8,
surrounding the negative pole.

(3) The directions of the axes of all the other molecules form
a conical sheet surrounding the negative pole, and are at an
inclination 6, + B,.

When X, is greater than D the second group is absent. When
X, is greater than 0D the first group is also absent.

The state of the iron, therefore, though apparently demagnetized,
is in a different state from that of a piece of iron which has never
been magnetized.

To shew this, let us consider the effect of a magnetizing force
X, acting in either the positive or the ncgative dircetion. The
first permanent effect of such a force will be on the third group
of molecules, whose axes make angles = 0,4 8, with the negative
axis.
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If the force X, acts in the megative direction it will begin to
produce a permanent effect as soon as 6,4+ 3, becomes less than
6,+8,, that is, as soon as X, becomes greater than X;. But if
X, acts in the positive direction it will begin to remagnetize the
iron as soon as #,—pB becomes less than 6,4 8,, that is, when
0, = 0,+28,, or while X, is still much less than X,

It appears therefore from our hypothesis that—

‘When a piece of iron is magnetized by means of a force X, its
magnetism cannot be increased without the application of a force
greater than X;. A reverse force, less than X, is sufficient to
diminish its magnetization.

If the iron is exactly demagnetized by a reversed force X, then
1t cannot be magnetized in the reversed direction without the
application of a force greater than X, but a positive force less than
X, is sufficient to begin to remagnetize the iron in its original
direction.

These results are consistent with what has been actually observed
by Ritchie *, Jacobi t, Marianini f, and Joule §.

A very complete account of the relations of the magnetization
of iron and steel to magnetic forces and to mechanical strains is
given by Wiedemann in his Galvarismus. By a detailed com-
parison of the effects of magnetization with those of torsion, he
shews that the ideas of clasticity and plasticity which we derive
from experiments on the temporary and permanent torsion of wires
can be applied with equal propriety to the temporary and permanent
magnetization of iron and steel.

447.] Matteucel | found that the extension of a hard iron bar
during the action of the magnetizing force increases its temporary
magnetism. This has been confirmed by Wertheim. In the case
of soft bars the magnetism is diminished by extenston.

The permanent magnetism of a bar increases when it is extended,
and diminishes when it is compressed.

Hence, if a piece of iron is first magnetized in one direction,
and then extended in another direction, the direction of magnet-
ization will tend to approach the direction of extension. If it be
compressed, the direction of magnetization will tend to become
pormal to the direction of compression.

This explains the result of an experiment of Wiedemann’s. A

* Phil. Mag.. 1833. + Pog., Ann., 1834.
1 Ann. de Chimie et de Physique, 18486. § Phil. Trans., 1855, p. 287.
| Ann. de Chimie ef de Physique, 1858,
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current was passed downward through a vertical wire. If, either
during the passage of the current or after it has ceased, the wire
be twisted in the direction of a right-handed screw, the lower end
becomes a north pole.

Fig. 11. Fig. 12.

Here the downward current magnetizes every part of the wire
in a tangential direction, as indicated by the letters A.S.

The twisting of the wire in the direction of a right-handed screw
causes the portion 4BCD to be extended along the diagonal 4C
and compressed along the diagonal B7). The direction of magnet-
ization therefore tends to approach AC and to recede from B0,
and thus the lower end becomes a north pole and the upper end
a south pole.

Lffect of Magnetization on the Dimensions of the Magnet.

448.7 Joule*, in 1842, found that an iron bar becomes length-
ened when it is rendered magnetic by an electric current in a
coil which surrounds it. He afterwardst shewed, by placing the
bar in water within a glass tube, that the volume of the iron is
not augmented by this magnetization, and concluded that its
transverse dimensions were contracted.

Finally, he passed an electric current through the axis of an iron
tube, and back outside the tube, so as to make the {nbe into a
closed magnetie solenoid, the magnetization being at right angles
to the axis of the tube. The length of the axis of the tube was
found in this case to be shortened.

He found that an iron rod under longitudinal pressure is also
elongated when it is magnetized. When, however, the rod is
under considerable longitudinal tension, the effect of magnetization
1s to shorten 1t.

* Sturgeon's dnnals of Electricity, vol. viil. p. 219.
+ Phil. May., 1847.
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This was the case with a wire of a quarter of an inch diumeter
when the tension exceeded 600 pounds weight.

In the case of a hard steel wire the effect of the magnetizing
force was in every case to shorten the wire, whether the wire was
under temsion or pressure. The change of length lasted only as
long as the magnetizing force was in action, no alteration of length
was observed due to the permanent magnetization of the steel.

Joule found the elongation of iron wires to be nearly proportional
to the square of the actual magnetization, so that the first effect
of a demagnetizing current was to shorten the wire.

On the other hand, he found that the shortening effect on wires
under tension, and on stecl, varied as the product of the magnet-
ization and the magnetizing current.

Wiedemann found that if a vertical wire is magnetized with its
north end uppermost, and if a current is then passed downwards
through the wire, the lower end of the wire, if free, twists in the
direction of the hands of a watch as seen from above, or, in other
words, the wire becomes twisted like a right-handed screw.

In this case the magnetization due to the action of the current
on the previously existing magnetization is in the direction of
a left-handed screw round the wire. Hence the twisting would
indicate that when the iron is magnetized it contracts in the
direction of magnetization and expands in directions at right angles
to the magnetization. This, however, reems not to agree with Joule’s
results,

Tor further developments of the theory of magnetization, see-
Arts. 832-845.
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CHAPTER VIIL

MAGNETIC MEASUREMENTS.

449.] TrE principal magneticgmeasurements are the determination
of the magnetic axis and magnetic moment of a magnet, and that
of the direction and intensity of the magnetic force at a given
place.

Since these measurements are made near the surface of the earth,
the magnets are always acted on by gravity as well as by terrestrial
magnetism, and since the magnets are made of steel their mag-
netism is partly permanent and partly induced. The permanent
magnetism is altered by changes of temperature, by strong in-
duction, and by violent blows ; the induced magnetism varies with
every variation of the external magnetic force.

The most convenient way of observing the force acting on a
magnet is by making the magnet free to turn about a vertical
axis. In ordinary compasses this is done by balancing the magnet
on a vertical pivot. The finer the point of the pivot the smaller
is the moment of the friction which interferes with the action of
the magnetic force. Tor more refined observations the magnet
is suspended by a thread composed of a silk fibre without twist,
either single, or doubled on itself a sufficient number of times, and
so formed into a thread of parallel fibres, each of which supports
as nearly as possible an equal part of the weight. The force of
torsion of such a thread is much less than that of a metal wire
of equal strength, and it may be calculated in terms of the ob-
served azimuth of the magnet, which is not the case with the force
arising from the friction of a pivot.

The suspension fibre can be raised or lowered by turning a
horizontal serew which works in a fixed nut. The fibre is wound
round the thread of the screw, so that when the serew is turned
the suspension fibre always hangs in the same vertical line.
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The suspension fibre carries a small horizontal divided circle
called the Torsion-circle, and a stirrup with an index, which can
be placed so that the index coincides with any given division of
the torsion eircle. The stirrup is so shaped that the magnet bar
can be fitted into it with its axis horizontal, and with any one
of its four sides uppermost.

To ascertain the zero of torsion a non-magnetic body of the
same weight as the magnet is placed
in the stirrup, and the position of
the torsion circle when in equilibrium
ascertained.

The magnet jtself is a piece of
hard-tempered steel. According to
Gauss and Weber its length ought
to be at least eight times its greatest
transverse dimension. This 1s neces-
sary when permanence of the direc-
tion of the magnetic axis within the
magnet is the most important con-
sideration. ~'Where promptness of
motion 1s required the magnet should
be shorter, and it may even be ad-
visable In observing sudden altera-
tions in magnetic force to use a bar
magnetized transversely and sus-
pended with its longest dimension
vertical ¥,

450.] The magnet is provided with
an arrangement for ascertaining its
angular position. For ordinary pur-
poses its ends are pointed, and a
divided ecircle is placed below the
ends, by which their positions are read off by an eye placed in a
plane through the suspension thread and the point of the needle.

For more accurate observations a plane mirror is fixed to the
magnet, so that the normal to the mirror coincides as npearly as
possible with the axis of magnetization. This is the method
adopted by Gauss and Weber.

Another method 1s to attach to one end of the magnet a lens and
to the other end a scale engraved on glass, the distance of the lens

* Joule, Proc. Phil. Soc., Manchester, Nov. 29, 1864.

Fig. 13.
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from the scale being equal to the prineipal focal length of the lens.
The straight line joining the zero of the scale with the optical
centre of the lens ought to coincide as nearly as possible with
the magnetic axis.

As these optical methods of ascertaining the angular position
of suspended apparatus are of great importance in many physical
researches, we shall here consider once for all their mathematical

theory.

Theory of the Mirror Method.

‘We shall suppose that the apparatus whose angular position is
to be determined is capable of revolving about a vertical axis.
This axis is in general a fibre or wire by which it is suspended.
The mirror should be truly plane, so that a scale of millimetres
may be seen distinetly by reflexion at a distance of several metres
from the mirror.

The normal through the middle of the mirror should pass through
the axis of suspension, and should be accurately horizontal. We
shall refer to this normal as the line of collimation of the ap-
paratus.

Having roughly ascertained the mean direction of the line of
collimation during the experiments which are to be made, a tele-
scope 1s erected at a convenient distance in front of the mirror, and
a little above the level of the mirror. '

The telescope is capable of motion in a vertical plane, it is
directed towards the suspension fibre just above the mirror, and
a fixed mark is erected in the line of vision, at a horizontal distance
from the object glass equal to twice the distance of the mirror
from the object glass. The apparatus should, if possible, be so
arranged that this mark is on a wall or other fixed object. In
order to see the mark and the suspension fibre at the same time
through the telescope, a ecap may be placed over the object glass
having a slit along a vertical diameter. This should be removed
for the other observations. The telescope is then adjusted so that
the mark is seen distinctly to coincide with the vertical wire at the
focus of the telescope. A plumb-line is then adjusted so as to
pass close in front of the optical centre of the object glass and
to hang below the telescope. Below the telescope and just behind
the plumb-line a scale of equal parts is placed so as to be bisected
at right angles by the plane through the mark, the suspension-fibre,
and the plumb-line. The sum of the heights of the scale and the
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object glass should be equal to twice the height of the mirror from
the floor. The telescope being now directed towards the mirror
will see in it the reflexion of the scale. If the part of the scale
where the plumb-line crosses it appears to coincide with the vertical
wire of the telescope, then the line of collimation of the mirror
coinecides with the plane through the mark and the optical centre
of the object glass. If the vertical wire coincides with any other
division of the scale, the angular position of the line of collimation
is to be found as follows :—

Let the plane of the paper be horizontal, and let the various
points be projected on this plane. Let O be the centre of the
object glass of the tclescope, P the fixed mark, £ and the vertical
wire of the telescope are conjugate foci with respect to the object
glass. Let M be the point where OF cuts the plane of the mirror.
T.et MA be the normal to the mirror; then OM Y = & is the angle
which the line of collimation makes with the fixed plane. Let /8
be a line in the plane of O M and M N, such that NMS = OMUN,
then § will be the part of the scale which will be seen by reflexion
to coincide with the vertical wire of the telescope. Now, since

Fig. 14.

MN is horizontal, the projected angles OMN and NMS in the
figure are equal, and OMS = 20, Hence 08 = 0M tan 26.

We have therefore to measure OM in terms of the divisions of
the scale ; then, if s, is the division of the scale which eoincides with
the plumb-line, and s the observed division,

§—8, =0Mtan 29,
whence 6 may be found. In measuring O3 we must remember
that if the mirror is of glass, silvered at the back, the virtual image
of the reflecting surface is at a distance behind the front surface
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of the glass = i , where Z is the thickness of the glass, and p is
13

the index of refraction.

‘We must also remember that if the line of suspension does not
pass through the point of reflexion, the position of M will alter
with 6. Hence, when it is possible, 1t is advisable to make the
centre of the mirror coincide with the line of suspension.

It 1s also advisable, especially when large angular motions have
to be observed, to make the scale in the form of a coneave cylindric
surface, whose axis is the line of suspension, The angles are then
observed at once in eircular measure without reference to a table
of tangents. The scale should be carefully adjusted, so that the
axis of the eylinder coincides with the suspension fibre. The
numbers on the scale should always run from the one end to the
other in the same direction so as to avoid negative readings. Fig.15
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Fig. 15.
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represents the middle portion of a scale to be used with a mirror
and an inverting telescope.

This method of observation is the best when the motions are
slow. The observer sits at the telescope and sees the image of
the scale moving to right or to left past the vertical wire of the
telescope.  With a clock beside him he can note the instant at
which a given division of the scale passes the wire, or the division
of the scale which is passing at a given tick of the clock, and he
can also record the extreme limits of each oscillation.

When the motion is more rapid it becomes impossible to read
the divisions of the scale except at the instants of rest at the
extremities of an oscillation. A conspicuous mark may be placed
at a known division of the seale, and the instant of transit of this
mark may be noted.

When the apparatus is very light, and the forces variable, the
motion is so prompt and swift that observation through a telescope
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would be useless. In this case the observer looks at the scale
directly, and observes the motions of the image of the vertical wire
thrown on the scale by a lamp.

It is manifest that since the image of the scale refleeted by the
mirror and refracted by the object glass coincides with the vertical
wire, the image of the vertical wire, if sufficiently illuminated, will
coineide with the scale. To observe this the room is darkened, and
the concentrated rays of a lamp are thrown on the vertical wire
towards the object glass. A bright pateh of light crossed by the
shadow of the wire is seen on the scale. Its motions can be
followed by the eye, and the division of the scale at which it comes
to rest can be fixed on by the eye and read off at leisure. If it be
desired to note the instant of the passage of the bright spot past a
given point on the scale, a pin or a bright metal wire may be
placed there so as to flash out at the time of passage.

By substituting a small hole in a diaphragm for the cross wire
the image becomes a small illuminated dot moving to right or left
on the scale, and by substituting for the scale a eylinder revolving
by clock work about a horizontal axis and covered with photo-
graphic paper, the spot of light traces out a curve which can be
afterwards rendered visible. Each abscissa of this curve corresponds
to a particular time, and the ordinate indicates the angular
position of the mirror at that time. In this way an automatic
system of continuous registration of all the elements of terrestrial
magnetism has been established at Kew and other observatories.

In some cases the telescope is dispensed with, a vertical wire
is illuminated by a lamp placed behind it, and the mirror is a
concave one, which forms the image of the wire on the scale as
a dark line across a patch of light.

451.] In the Kew portable apparatus, the magnet is made in
the form of a tube, having at one end a lems, and at the other
a glass scale, so adjusted as to be at the prineipal focus of the lens.
Light is admitted from behind the scale, and after passing through
the lens it is viewed by means of a telescope.

Since the scale is at the principal focus of the lens, rays from
any division of the scale emerge from the lens parallel, and if
the telescope is adjusted for celestial objects, it will shew the scale
in optical coincidence with the cross wires of the telescope. If a
given division of the scale coincides with the intersection of the
cross wires, then the line joining that division with the optical
centre of the lens must be parallel to the line of collimation of
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the telescope. By fixing the magnet and moving the telescope, we
may ascertain the angular value of the divisions of the scale, and
then, when the magnet is suspended and the position of the tele-
scope known, we may determine the position of the magnet at
any instant by reading off the division of the scale which coincides
with the cross wires.

The telescope is supported on an arm which is centred in the
line of the suspension fibre, and the position of the telescope is
read off by verniers on the azimuth eircle of the instrument.

Thig arrangement is suitable for a small portable magnctometer
in which the whole apparatus is supported on one tripod, and in
which the oscillations due to accidental disturbances rapidly
subside.

Determination of the Direction of the Axiz of the Magnet, and of'
the Direction of Lerrestrial Magnetism.

452.] Let a system of axes be drawn in the magnet, of which the
axis of z is in the direction of the length of the bar, and « and »
perpendicular to the sides of the bar supposed a parallelepiped.

Let £, m, » and A, u, v be the angles which the magnetic axis
and the line of collimation make with these axes respectively.

Let 3/ be the magnetic moment of the magnet, let /A be the
horizontal component of terrestrial magnetism, let Z be the vertical
component, and let & be the azimuth in which Z/ acts, reckoned
from the north towards the west.

Let ¢ be the observed azimuth of the line of collimation, let
a be the azimuth of the stirrup, and B the reading of the index
of the torsion circle, then a—p3 is the azimuth of the lower end
of the suspension fibre.

Let y be the value of a—@3 when there is no torsion, then the
moment of the foree of torsion tending to diminish a will be

T(a—B—7y),
where 7 Is a coeflicient of torsion depending on the nature of the
fibre.

To determine A, fix the stirrup so that y is vertical and up-
wards, z to the north and # to the west, and observe the azimuth
¢ of the line of collimation. Then remove the magnet, turn it
through an angle = about the axis of z and replace it in this
inverted position, and observe the azimuth {” of the line of col-
limation when y is downwards and z to the east,

IRIS - LILLIAD - Université Lille 1



452.] DIRECTION OF MAGNETIC FORCE. 95

= a-+ :’2z _AJ (1)
{'=0a— ;—_ +A (2)
Henee A=T ;(g'_ 0. (3)

Next, hang the stirrup to the suspension fibre, and place the
magnet in it, adjusting it carefully so that y may be vertical and
upwards, then the moment of the force tending to increase a is

MIT sin m sin (5 —a— ;’ + 0)—r (a—B—7). (4)
But if ¢ is the observed azimuth of the line of collimation
(=a+l—A (5)
so that the force may be written
MH sin m sin (6—§+l—/\)—r({+k——g—ﬂ-—7)- (6)

When the apparatus is in equilibrium this quantity is zero for
a particular value of (.

‘When the apparatus never comes to rest, but must be observed
in a state of vibration, the value of ¢ corresponding to the position
of equilibrium may be calculated by a method which will be
deseribed in Art. 735.

When the force of torsion is small compared with the moment
of the ma‘rnetlc force, we may put 8—{+/—A for the sine of that
angle.

If we give to 3, the reading of the torsion circle, two different
values, 8, and j3,, and if § and , are the corresponding values of ¢

. M sinm((—G) = 7(G—G—Bi+8:) (7)
or, if we put
= é é;2+ﬂ2 v, then = MHsinm7, (8)
and equation (7) becomes, dividing by M sin z,
b=t l—A—7 ((+A—Z —B—y) = 0. (9)

If we now reverse the magmet so that y is downwards, and
adjust the apparatus till g is exactly vertical, and if {" is the new
value of the azimuth, and 8" the corresponding declination,

6'—('—l+)\-—r’(§'—)\+Z—B—y)z 0, (10)

whenee Xy (e eyt s (0 e—2847). (1n)
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The reading of the torsion circle should now be adjusted, so that
the coefficient of 7° may be as nearly as possible zero. For this
purpose we must determine y, the value of a—3 when there is no
torsion. This may be done by placing a non-magnetic bar of the
same weight as the magnet in the stirrup, and determining a—g
when there is equilibrium. Since 7’ 1s small, great accuracy is not
required. Another method is to use a torsion bar of the same
weight as the magnet, containing within 1t a very small magnet

. .1 ..
whose magnetic moment is p of that of the principal magnet.

Since r remains the same, " will become »7", and if § and §{” are

the values of ¢ as found by the torsion bar,

d=4(G+ &) +inT (G+G—2 B+ (12)
Subtracting this equation from (11),

2(n—1)(B8+y) = (» + —717)({1+{1’)—(1 + —Tl,)(§+ . (13

Having found the value of 8+ y in this way, 8, the reading of

the torsion circle, should be altered till
(+{'—2(8+y) =0, (14)
as nearly as possible in the ordinary position of the apparatus.

Then, since 7 is a very small numerical quantity, and since its
coeflicient is very small, the value of the second term in the ex-
pression for & will not vary much for small errors in the values
of ¥ and y, which are the quantities whose values are least ac-
curately known.

The value of 8, the magnetic declination, may be found in this
way with considerable aceuracy, provided it remains eonstant during
the experiments, so that we may assume 8" = 8.

‘When great accuracy is required it is necessary to take account
of the variations of & during the experiment. For this purpose
observations of another suspended magnet should be made at the
same instants that the different values of ( are observed, and if
n, 7" are the observed azimuths of the second magnet corresponding
to (and ¢’, and 1f & and & are the corresponding values of 3, then

¥ —8=n—n. (15)
Henee, to find the value of 8 we must add to (11) a correction
$(n—n)
The declination at the time of the first observation is therefore

d=3+{+n—7)+37 {4+ —28—27). (16)
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To find the direction of the magnetic axis within the magnet
subtract (10) from (9) and add (15),
I =A+5((— )= =)+ 57 ((— (' + 20 —m), (17)
By repeating the experiments with the bar on its two edges, so
that the axis of # is vertically upwards and downwards, we can
find the value of . If the axis of* collimation is capable of ad-
justment it ought to be made to coincide with the magnetic axis
as nearly as possible, so that the error arising from the magnet not
being exactly inverted may be as small as possible *.

On the Measurement of Magnetic Forces.

453.] The most important measurements of magnetic force are
those which determine 3, the magnctic moment of a magnet,
and [f, the intensity of the horizontal component of terrestrial
magnetism, This is gencrally done by combining the results of
two experiments, one of which determines the ratio and the other
the product of these two quantities.

The intensity of the magnetic force due to an Infinitely small
magnet whose magnetic moment is A/, at a point distant » from
the centre of the magmet in the positive direction of the axis of
the magnet, is B3 ;% (1)
and is in the direction of ». If the magnet is of finite size but
spherical, and magnetized uniformly in the direction of its axis,
this value of the force will still be exact. If the magnet is a
solenoidal bar magnet of length 2.7,

L

M /2 A
1622;3(1'*‘2;5'*‘3;1‘*”&0')' (2)

If the magnet be of any kind, provided its dimensions are all
small compared with 7,

M 1 1
B=2 (1+A1;+A272-)+&c., (3)

where 4,, 4,, &c. are coeflicients depending on the distribution of
the magnetization of the bar.

Let H be the intensity of the horizontal part of terrestrial
magnetism at any place. [/ is directed towards magnetic north.
Let 7 be measured towards magnetic west, then the magnetie force
at the extremity of » will be /A towards the north and % towards

* Sge a Paper on ‘Imperfect Inversion,” by W. Swan. Trans. L. S. Edin.,
vol. xxi (1855), p. 349.
varL, 1T. H
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98 MAGKETIC MEASUREMENTS. [453.

the west. The resultant force will make an angle 8 with the
maguetic meridian, measured towards the west, and such that

R = Htan 0. (1)
% we proceed as follows :—

The direction of the magnefic north having been ascertained, a
magnet, whose dimensions should not be too great, is suspended
as in the former experiments, and the deflecting magnet A is
placed so that its centre is at a distance r from that of the sus-
pended magnet, in the same horizontal plane, and due magnetic
east.

The axis of M is carelully adjusted so as to be horizountal and
in the direction of 7.

Henee, to determine

The suspended magnet is observed before M is brought near
and also after 1t is placed in position. If 8 is the observed deflexion,
we have, if we use the approximate formula (1),

?I{ = L: tan@; (5)
or, if we use the formula (3),
;—%ﬁtanH:l—%Al;—}—Aerz +&e. (6)

Here we must DLear in mind that though the deflexion 6 can
be observed with great accuracy, the distance r between the centres
of the magnets is a quantily which cannot be precisely deter-
mined, unless both magnets are fixed and their centres defined
by marks.

This difficulty is overcome thus :

The magnet 3 is placed on a divided secale which extends east
and west on both sides of the suspended magmet. The middle
point between the ends of # is reckoned the centre of the magnet.
This point may be marked on the magnet and its position observed
ou the scale, or the positions of the ends may be observed and
the arithmetic mean taken. Call this ¢,, and let the line of the
suspension fibre of the suspended magmet when produced cut the
scale at s,, then ;=8 —s¢,, where g, is known accurately and s, ap-
proximately. Let 6, be the deflexion observed in this position of M.

Now reverse 3, that is, place it on the scale with its ends
reversed, then 7, will be the same, but M and 4,, 4;, &e. will
have their signs changed, so that if 6, is the deflexion,

—%grftan%: l—-—A,—:—l—f—Az —IE—&C. (7)

(81
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Taking the arithmetical mean of (6) and (7),

1 4

r et

Now remove M to the west side of th(, suspcnded magnet, and

place it with its centre at the point marked 2s,—s on the scale.

Let the deflexion when the axis is in the first position be 6,, and

when it is in the second 0,, then, as before,

117

M

Let us suppose that the true posmlon of the canhc of the sus-
pended magnet is not s, but §;4 o, then _

ry=r—o, Ty, = r-+0, (10)

1 " " " n(n—l) o? . .
and 5 (" +r") =7 (]. + 2 2 + &e.), (11)

2
and since :— may be neglected if the measurements are carefully

1% (tan 6, —tan 6,) = 1+A o+ 4, Px +&c (8

7,3 (tan 6, —tan 0,) = 1+A +A — +&c (9)

2
made, we are sure that we may take the arithmetical mean of 7®
and 7" for #™

Hence, taking the arithmetical mean of (8) and (9)

1 H
s’ 3 (tan 0, ~tan 0, + tan 6, — tan 6,) = 1+A2—F +&ec., (12)
or, making
1
Z(tan ¢, —tan 0, + tan 6, —tan 6,) = D, (13)
1 H

Eﬂﬂﬁ* = 1-+-Ale2 + &e.

454.] We may now regard D and 7 as capable of exact deter-
mination.

The quantity 4, can in no case exceed 2 L2, where £ is half the
length of the magnet, so that when # is considerable compared
with Z we may neglect the term in A4, and determine the ratio
of H to M at once. We cannot, however, assume that 4, is equal
to 2 Z2, for it may be less, and may even be negative for a magnet
whose largest dimensions are transverse to the axis. The term
in 4,, and all higher terms, may safely be neglected.

To eliminate 4,, repeat the experiment, using distances 7, 7;, 73,

&c., and let the values of D be D, .Dz, D, &c., then

2M, 1
D, = 1;( )
22![
Dz_ 27 5)
&e.

H 2
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If we suppose that the probable errors of these equations are
equal, as they will be if they depend on the determination of D
only, and if there is no uncertainty about #, then, by multiplying
each equation by »—2 and adding the results, we obtain one equation,
and by multiplying each equation by 7% and adding we obtain
another, according to the general rule in the theory of the com-
bination of fallible measures when the probable error of each
equation is snpposed the same.

Let us write

S (Dr3) for Dym 34+ Dyry 3+ Dyry 3 4 &e,
and use similar expressions for the sums of other groups of symbols,
then the two resultant equations may be written
2M

B(Dr7%) = 77 (B + 4,20,

2ro) = 2 e 1 430,
whence
20 _ .
S =[S =S (Dr S —S(Dr )3,
and A, {S(Dr3) 2 19—2 (Dr %) 2 (r9)}
=3S(Dr 32 =S (Dr 3 = ().

The value of A4, derived from these equations ought to be less
than half the square of the length of the magnet 2. 1If it is not
we may suspect some error in the observations. This method of
observation and reduction was given by Gauss in the © First Report
of the Magnetiec Association.’

When the observer can make only two series of experiments at
2M
H

distances #; and 7,, the value of derived from these experi-

ments is
Q = ﬂ/lr= DrS—Dyrp ,
H 72 =12 rZ—7,
If 3D, and 8.0, are the actual errors of the observed deflexions
D, and D,, the actual error of the calculated result @ will be
758D, —1,°80),
bg = IR AT
If we suppose the errors 3.0, and &2, to be independent, and
that the probable value of either is 8.0, then the probable value
of the error in the calculated value of @ will be & @, where

2 ,7‘11‘),+1210 2
(5 Q) - (712_7.22)2 (6D) .
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If we suppose that one of these distances, say the smaller, is
given, the value of the greater distance may be determined so as
to make 8¢ a minimum. This condition leads to an equation of
the fifth degree in r 2, which has only one real root greater than
745 From this the best value of 7 is found to be 7, = 1.31897,%,

If one observation only is taken the best distance is when

8.0
D ”
where 8.0 is the probable error of a measurement of deflexion, and
37 is the probable error of a measurement of distance.

Method of Sines.

455.] The method which we have just described may be called
the Method of Tangents, because the tangent of the deflexion is
a measure of the magnetic force.

If the line 7, instead of being measured east or west, is adjusted
till it 1s at right angles with the axis of the deflected magnet,
then £ is the same as before, but in order that the suspended
magnet may remain perpendicular to 7, the resolved part of the
force 7 in the direction of # must be equal and opposite to X.
Hence, 1f 4 1s the deflexion, 2 = I/ sin 6.

This method is called the Method of Sines. It can be applied
only when £ is less than 77.

In the Kew portable apparatus this method is employed. The
suspended magnet hangs from a part of the apparatus which
revolves along with the tclescope and the arm for the deflecting
magnet, and the rotation of the whole is measured on the azimuth
circle.

The apparatus is first adjusted so that the axis of the telescope
coincides with the mean position of the line of collimation of the
magnet 1n its undisturbed state. If the magnet i1s vibrating, the
true azimuth of magnetic north is found by observing the ex-
tremities of the oscillation of the transparent scale and making the
proper correction of the reading of the azimuth circle.

The deflecting magnet is then placed upon a straight rod which
passes through the axis of the revolving apparatus at right angles
to the axis of the telescope, and is adjusted so that the axis of the
deflecting magnet is in a line passing through the centre of the
suspended magnet.

The whole of the revolving apparatus Is then moved till the line

* See Airy’s Magnetism.
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102 MAGNETIC MEASUREMENTS, [456.

of collimation of the suspended magnet again coincides with the
axis of the telescope, and the new azimuth reading is corrected,
if necessary, by the mean of the scale readings at the extremities
of an oscillation.

The difference of the corrected azimuths gives the deflexion, after
which we proceed as in the method of tangents, except that in the
expression for 2 we put sin 6 instead of tan 6.

In this method there is no correction for the torsion of the sus-
pending fibre, since the relative position of the fibre, telescope,
and magnet is the same at every observation.

The axes of the two magnets remain always at right angles in
this method, so that the correction for length can be more ac-
curately made.

456.] Iaving thus mecasured the ratio of the moment of the
deflecting magnet to the horizontal component of terrestrial mag-
netism, we have next to find the product of tlhiese quantilies, by
determining the moment of the eouple with which terrestrial mag-
netism tends to turn the same magnet when its axis is deflected
from the magnetic meridian,

There are two methods of making this measurement, the dy-
namical, in which the time of vibration of the magnet under the
action of terrestrial magunetism is observed, and the statical, in
which the magnet is kept in equilibrium between a measurable
statical couple and the magnetic force.

The dynamical method requires simpler apparatus and is more
accurate for absolute measurements, but takes up a considerable
time, the statical method admits of almost instantancous measure-
ment, and is therefore useful in tracing the changes of the intensity
of the magnetic force, but it requires more delicate apparatus, and
1s not so accurate for absolnte measurement.

Method of Vibrations.

The magnet is suspended with its magnetic axis horizontal, and
1s set in vibration in small ares. The vibrations are observed by
means of any of the methods already described.

A point on the scale is chosen corresponding to the middle of
the arc of vibration. The instant of passage through this point
of the scale 1u the positive direction is observed. If there is suffi-
cient time before the return of the magnet to the same point, the
instant of passage through the point in the negative direction is
also observed, and the process is continued till 4 1 positive and
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n negative passages have been observed. If the vibrations are
too rapid to allow of every consecutive passage being observed,
every third or every fifth passage is observed, care being taken that
the observed passages are alternately positive and negative.

Let the observed times of passage be 7, 7,, 7,,,,, then if

we put 1 , o
P S A+ Ty &t Dy L) = L

1
T+ T, &, FT) =17

then 7,4, is the mean time of the positive passages, and ought
to agree with 7,.,, the mean time of the negative passages, if the
point has been properly chosen. The mean of these results is
to be taken as the mean time of the middle passage.

After a large number of vibrations have taken place, but before
the vibrations have ceased to be distinct and regular, the observer
makes another series of cobservations, from which he deduces the
mean time of the middle passage of the second series.

By calculating the perlod of vibration either from the first
scries of observations or from the sccond, he ought to be able to
be certain of the number of whole vibrations which have taken
place in the interval between the time of middle passage in the two
series. Dividing the interval between the mean times of middle
passage in the two series by this number of vibrations, the mean
time of vibration is obtained.

il 3

The observed time of vibration is then to be reduced to the
time of vibration in intinitely small ares by a formula of the same
kind as that used in pendulum observations, and if the vibrations
are found to diminish rapidly in amplitude, there is another cor-
rection for resistance, see Art. 740. These corrections, however, are
very small when the magnet hangs by a fibre, and when the arc of
vibration is only a few degrees.

The equation of motion of the magnet is

d29

A Sz + M sin 0+ MIL< (0—y) = 0

where 6 is the angle between the magnetic axis and the direction
of the foree H, A4 is the moment of inertia of the magnet and
suspended apparatus, M 1s the magnetic moment of the magnet,
H the intensity of the horizontal magnetic force, and A7//+" the
cocflicient of torsion: 77 1s determined as in Art. 452, and is a

very small quantity. The value of 0 for equilibrium is

0, = % , a very small angle,

IRIS - LILLIAD - Université Lille 1



104 MAGNETIC MEASUREMENTS. [457.

and the solution of the equation for small values of the amplitude,
C is 0:000s(2rr% +a)+30,

where 7' is the periodic time, and C the amplitude, and

e 4n%d
MH(O 4+’
whence we find the value of M I,
2
M= 274

T2 (147

Here 7 is the time of a complete vibration determined from
observation. 4, the moment of inertia, is found once for all for
the magnet, cither by weighing and measuring it if it is of a
regular figure, or by a dynamical process of comparison with a body
whose moment of inertia is known.

Combining this value of 3 /] with that of :ﬂ[ formerly obtained,

I
, 2
we get M2 = (MIT) (M =- 1"?2% D3,
8§n2d
and = (M) ( ) 721 14 1+T)Dr3

457.7 We have supposed that Z and 3 continue constant during
the two series of experiments. The fluctuations of H may be
ascertained by simultaneous observations of the bifilar magnet-
ometer to be presently described, and if the magnet has been in
use for some time, and is not exposed during the experiments 1o
changes of temperature or to concussion, the puart of M which de-
pends on permanent magnetism may be assumed to be constant.
All steel magnets, however, are capable of induced magnetism
depending on the action of external magnetic force.

Now the magnet when employed in the deflexion experiments
1s placed with its axis east and west, so that the action of ter-
restrial magnetism is transverse to the magnet, and does not tend
to increase or diminish #7.  'When the magnet is made to vibrate,
its axis is north and south, so that the action of terrestrial mag-
netism tends to magnetize it in the direction of the axis, and
therefore to increase its magnetic moment by a quantity £ A, where
% is a coeflicient to be found by experiments on the magnet.

There are two ways in which this source of error may be avoided
without caleulating £, the experiments being arranged so that the
magnet shall be in the same condition when employed in deflecting
another magnet and when itself swinging.
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We may place the deflecting magnet with its axis pointing
north, at a distance 7 from the centre of the suspended magnet,
the line » making an angle whose cosine 1s V% with the magnetic
meridian.  The action of the deflecting magnet on the suspended
one is then at right angles to its own direction, and is equal to

n=vil.

Here M is the magnetic moment when the axis poinis north,
as in the experiment of vibration, so that no correction has to be
made for induction.

This method, however, is extremely difficult, owing to the large
errors which would be introduced by a slight displacement of the
deflecting magnet, and as the correction by reversing the deflecting
magnet is not applicable here, this method is not to be followed
except when the object 1s to determine the coeflicient of induction.

The following method, in which the magnet while vibrating is
freed from the inductive action of terrestrial magmetism, is due to
Dr. J. P. Joule *,

Two magnets are prepared whose magnetic moments are as
nearly equal as possible. In the deflexion experiments these mag-
nets are used separately, or they may be placed simultaneously
on opposite sides of the suspended magnet to produce a greater
deflexion. In these experiments the inductive force of terrestrial
magnetism is transverse to the axis.

Let one of these magnets be suspended, and let the other be
placed parallel to it with its cenire exactly below that of the sus-
pended magnet, and with its axis in the same direction. The force
which the fixed magnet exerts on the suspended one is in the
opposite direction from that of terrestrial magnetism. If the fixed
magnet be gradually brought nearer to the suspended one the time
of vibration will inerease, till at a certain point the equilibrium will
cease to be stable, and beyond this point the suspended magnet
will make oscillations in the reverse position. By experimenting
in this way a position of the fixed magnet is found at which it
exactly neutralizes the effect of terrestrial magnetism on the sus-
pended one. The two magnets are fastened together so as to be
parallel, with their axes turned the same way, and at the distance
Just found by experiment. They are then suspended in the usual
way and made to vibrate together through small arcs.

* Proc. hil. 8., Manchester, March 19, 18G7.
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The lower magnet exactly neutfralizes the effect of terrestrial
magnetism on the upper one, and since the magnuets are of equal
moment, the upper one neutralizes the inductive action of the earths
on the lower one.

The value of M is therefore the same in the experiment of
vibration as in the experiment of deflexion, and no correction for
induction is required.

458.] The most accurate method of ascertaining the intensity of
the horizontal magnetic force is that which we have just described.
The whole series of experiments, however, cannot be performed with
sufficient accuracy in much less than an hour, so that any changes
in the intensity which take place in periods of a few minutes would
escape observation. Hence a different method is required for ob-
serving the intensity of the magnetic force at any instant.

The statical method consists in deflecting the magnet by means
of a statical couple acting in a horizontal plane. If L he the
moment of this couple, # the magnetic moment of the magnet,
II the horizontal component of terrestrial magnetism, and 6 the
deflexion, MHsin 6 = L.

Hence, if 7 is known in terms of 8, M7 can Le found.

The couple L may be generated in two ways, by the torsional
elasticity of a wire, as in the ordinary torsion balance, or by the
weight of the suspended apparatus, as in the bifilar suspension.

In the torsion balance the magnet is fastened to the end of a
vertical wire, the upper end of which can be turned round, and its
rotation measured by means of a torsion circle.

‘We have then

L = r(a—ay—0) = MHsind.
Here a, is the value of the reading of the torsion circle when the
axis of the magnet coincides with the magnetic meridian, and a is
the actual reading. If the torsion circle is turned so as to bring
the magnet nearly perpendicular to the magnetic meridian, so that

6=7—0, then T(a—ao_gw') = MIT(1—}67),

or MH=r(1+}6%(a—a— 3 +0).

By observing &', the deflexion of the magnet when in equilibrium,
we can calculate A/ /] provided we know r.

If we only wish to know the relative value of 7/ at different
times it is not necessary to know either 47 or 7.

We may easily determine = in absolute measure by suspending
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a non-magnetic body from the same wire and observing its time
of oscillation, then if 4 is the moment of inertia of this body, and
7 the time of a complete vibration,
4724

72

The chief objection to the use of the torsion Lalance is that the
zero-reading a, is liable to change. Under the constant twisting

T —

foree, arising from the tendeney of the magnet to turn to the north,
the wire gradually acquires a permanent twist, so that it becomes
necessary to determine the zero-reading of the torsion circle afresh
at short intervals of time.

Difitar Suspension.

459.7 The method of suspending the magnet by two wires or
fibres was introduced by Gauss and Weber. As the bifilar sus-
pension is used in many electrical instruments, we shall investigate
it more in detail. The gcneral appearance of the suspension is
shewn in Fig. 16, and Fig. 17 represents the projection of the wires
on a horizontal plane.

A B and 4’ are the projections of the two wives.

A4’ and BA are the lines joining the upper and the lower ends
of the wires.

@ and & are the lengths of these lines.

a and B their azimuths.

W and W’ the vertical components of the tensions of the wires.

@ and @’ their horizontal components.

£ the vertical distance between 44" and B5’.

The forces which act on the magnet are—its weight, the couple
arising from terrestrial magnetism, the torsion of the wires (if any)
and their tensioms. Of these the effects of magnetism and of
torsion are of the nature of couples. Hence the resultant of the
tensions must consist of a vertical force, equal to the weight of the
magnet, together with a couple. The resultant of the vertical
components of the tensions is therefore along the line whose pro-
jection is O, the intersection of 44" and BB, and either of these
lines is divided in O in the ratio of ¥ to .

The horizontal components of the tensions form a couple, and
are therefore equal in magnitude and parallel in direction. Calling
either of them ), the moment of the couple which they form is

I = Q.prP, (1)
where P# is the distance between the parallel lines 458 and A" 1.
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To find the value of Z we have the equations of moments

QI =W.AB =W’ . A1, (2)
and the geometrical equation
(AB+ A'B) PP = absin (a—B), (3)
whence we obtain,
, ab WW .
L:Q..PP ——/’/\—WT;—WSKH(G—B). (4)
o]

Fig. 17.

If m is the mass of the suspended apparatus, and g the intensity

of gravity, - Wi W = myg. (5)
If we also write W—W"= nmyg, (6)
we find L = % (1 —W,Z)M‘q{% sin (a—pB). (7

The value of L is therefore a maximum with respeet to z when =z
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is zero, that is, when the weight of the suspended mass is equally
borne by the two wires.

We may adjust the tensions of the wires to equality by observing
the time of vibration, and making it a minimum, or we may obtain
a self-acting adjustment by attaching the ends of the wires, as
in Fig. 16, to a pulley, which turns on its axis till the tensions
are equal.

The distance of the upper ends of the suspension wires is re-
gulated by means of two other pullics. The distance between the
lower ends of the wires is also capable of adjustment.

By this adjustment of the tension, the couple arising from the
tensions of the wires becomes

L= % %& myg sin (a—3).

The moment of the couple arising from the torsion of the wires

is of the form r (y—8),

where 7 is the sum of the coeflicients of torsion of the wires.
The wires ought to be without torsion when « = 8, we may
then make y = a.
The moment of the couple arising from the horizontal magnetic
foree is of the form
MH sin (8—0),
where 3 is the magnetic declination, and 6 is the azimuth of the
axis of the magnet. We shall avoid the introduction of unnecessary
symbols without sacrificing generality if we assume that the axis of
the magnet is parallel to BB, or that g8 = 6.
The equation of motion then becomes
d20 ab
dar &
There are three principal positions of this apparatus.
(1) When a is nearly equal to 5. If 7} is the time of a complete
oscillation in this position, then
2
%:%%b—mg+r+MI[. )
(2) When a is mnearly equal to 3+a. If 7, is the time of a
complete oscillation in this position, the north end of the magnet
being now turned towards the south,
2
%xi:%gg—mg-{-'r—ﬂlﬂ. (10)

The quantity on the right-hand of this equation may be made

4 M][sin(é—d)-{-i mgsin(@a—0)+7(a—0).  (8)
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as small as we please by diminishing @ or 4, but it must not be
made negative, or the equilibrium of the magnet will become un-
stable. The magnet in this position forms an instrument by which
small variations in the direction of the magmnetic force may be

rendered sensible.
For when 3—6 is nearly equal to =, sin(3 —6) is nearly equal to

0—3, and we find
: P M (5—a). (11)

N g —MI

4

By diminishing the denominator of the fraction in the last term
we may make the variation of 6 very large compared with that of 3.
We should notice that the coefficient of 3 in this expression is
negative, so that when the direction of the magnetic force turns
in one direction the maguet turns in the opposite direction.

(3) In the third position the upper part of the suspension-
apparatus is turned round till the axis of the magnet is nearly
perpendicular to the magnetic meridian.

If we make

9—6:%—{-6', and a—0 =g8-—-7, (12)
the equation of motion may be written
@o
de®
If there is equilibrium when H = 7/, and ¢ = 0,

ab

A — M eos 04 5 S mgsn(3—0)47(3—0).  (13)
1 ad .
MH, + 77 mgsin 8+ 81 = 0, (14)

and if /7 is the value of the horizontal foree corresponding to a
small angle ¢,

=11 —

1ab
4 cosB+r
0’) (15)

1
‘14d .
1™ sin 34743

In order that the magnet may be in stable equilibrium it is
necessary that the numerator of the fraction in the second member
should be positive, but the more nearly it approaches zero, the
more sensitive will be the instrument in indicating changes in the
value of the intensity of the horizontal component of terrestrial
magnetism,

The statical method of estimating the intensity of the force
depends upon the action of an instrument which of itself assumes
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different positions of equilibrium for differcnt values of the force.
Hence, by means of a mirror attached to the magnet and throwing
a spot of light upon a photographie surface moved by clockwork,
a curve may be traced, from which the intensity of the force at any
instant may be determined according to a scale, which we may for
the present consider an arbitrary one.

460.] In an obscrvatory, where a continuous system of regis-
tration of declination and intensity is kept up either by eye ob-
servation or by the automatic photographic method, the absolute
values of the declination and of the intensity, as well as the position
and moment of the magnetic axis of a magnet, may be determined
to a greater degree of accuracy.

For the declinometer gives the declination at every instant affected
by a constant error, and the bifilar magnetometer gives the intensity
at every instant multiplied by a constant coefficient. In the ex-
periments we substitute for 8, 848, where 8 is the reading of
the declinometer at the given instant, and &, is the unknown but
constant error, so that & + 8§, is the true declination at that instant.

In like manner for Zf, we substitute CH" where /" is the reading
of the magnetometer on its arbitrary scale, and € is an unknown
but constant multiplier which converts these readings into absolute
measure, so that C7/” is the horizontal force at a given instant.

The experiments to determine the absolute values of the quan-
tities must be conducted at a sufficient distance from the declino-
meter and magnetometer, so that the different magnets may not
sensibly disturb each other. 'The time of every observation must
be noted and the corresponding values of 8" and I’ inserted. The
equations are then to be treated so as to find §,, the constant error
of the declinometer, and C the coefficient to be applied to the
readings of the magnetometer.  When these are found the readings
of both instruments may be expressed in absolute measure. The
absolute measurements, however, must be frequently repeated in
order to take account of changes which may occur in the magnetic
axis and magnetic moment of the magnets.

461.] The methods of determining the vertical component of the
terrestrial magnetic force have not been brought to the same degree
of precision. The vertical force must act on a magnet which turns
about a horizontal axis. Now a body which turns about a hori-
zonlal axis cannot be made so scusitive to the action of small forces
as a body whieh ig suspended hy a fibre and turns abont a vertical
axis. Besides this, the weight of a magnet is so large compared
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with the magnetic force exerted upon it that a small displace-
ment of the centre of inertia by unequal dilatation, &c. produces
a preater effect on the position of the magnet than a considerable
change of the magnetic force.

Hence the measurement of the vertical force, or the comparison
of the vertical and the horizontal forces, is the least perfect part
of the system of magnetic measurements.

The vertical part of the magnetic force is generally deduced from
the horizontal force by determining the direction of the total force.

If i be the angle which the total force makes with its horizontal
component, ¢ is called the magnetic Dip or Inclination, and if /7
is the horizontal force already found, then the vertical force is
Htan ¢, and the total force is # sce 1.

The magnetie dip is found by means of the Dip Needle,

The theoretical dip-needle is a magnet with an axis which passes
through its centre of inertia perpendicular to the magnetic axis
of the needle. The ends of this axis are made in the form of
cylinders of small radius, the axes of which are coincident with the
line passing through the centre of inertia. These cylindrical ends
rest on two horizontal planes and are free to roll on them.

When the axis is placed magnetic east and west, the needle
is free to rotate in the plane of the magnetic meridian, and if the
instrument is in perfect adjustment, the magnetic axis will set itself
in the direction of the total magnetic [orce.

It 1s, however, practically impossible to adjust a dip-needle so
that its weight does not influence its position of equilibrium,
because its centre of inertia, even if originally in the line joining
the centres of the rolling sections of the cylindrical ends, will cease
to be in this line when the needle is imperceptibly bent or un-
equally expanded. Besides, the determination of the true centre
of inertia of a magnet 1s a very difficult operation, owing to the
interference of the magnetic force with that of gravity.

Let us suppose one end of the needle and one end of the
pivot to be marked. ILet a line, real or imaginary, be drawn on
the needle, which we shall call the Line of Collimation. The
position of this line is read off on a vertical cirele. TLet @ be the
angle which this line makes with the radius to zero, which we shall
suppose to be horizontal. Let A be the angle which the magnetic
axls makes with the line of collimation, so that when the needle
is in this position the line of collimation is inclined 6+ A to the
horizontal.
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Let  be the perpendicular from the centre of inertia on the plane
on which the axis rolls, then p will be a function of 8, whatever
be the shape of the rolling surfaces. If both the rolling sections
of the ends of the axis are eircular,

p = c—asin(6+a) (1)
where ¢ is the distance of the centre of inertia from the line joining
the centres of the rolling sections, and « is the angle which this
line makes with the line of collimation.

If M is the magnetic moment, m the mass of the magnet, and
g the force of gravity,  the total magnetic force, and ¢ the dip, then,
by the conservation of energy, when there is stable equilibrium,

M1 cos (§+n—1)—mgp (2)
must be a maximum with respect to 8, or
M1 sin (6—}—)\——2) = —my gg: (3)
= —mgacos(f+a),
if the ends of the axis are cylindrical.

Also, if 7 be the time of vibration about the position of equi-
.y 2
librium, MI+mgasin (0+a) = %M—A (4
where 4 is the moment of inertia of the needle about its axis of
rotation,

In determining the dip a reading is taken with the dip cirele in
the magnetic meridian and with the graduation towards the west.

Let 6, be this reading, then we have

MIsin(0,+r—1) =—mygacos(f,+a). {5)
The instrument is now turned about a vertical axis through 180°,
so that the graduation is to the east, and if 6, is the new reading,
MIsin (,+A—m+i) = —mga cos (0,+ a). (6)
Taking (6) from (5), and remembering that 6, is nearly equal to
i, and 6, nearly equal to w—3i, and that A is a small angle, such
that mgaA may be neglected in comparison with M7,
MI(0,—0,+7—2%) =—2mgacosicosa. (7)
Now take the magnet from its bearings and place it in the

deflexion apparatus, Art. 453, so as to indicate its own magnetic
moment by the deflexion of a suspended magnet, then

M=3r*HD (8)
where D is the tangent of the deflexion.
VOL. 11, 1
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Next, reverse the magnetism of the needle and determine its
new magmnetic moment A, by observing a new deflexion, the tan-

gent of which 1s 7, M =131, )
whence MD = M'D, (10)

Then place 1t on its bearings and take two readings, 65 and 6,
in which 6, is nearly w+¢, and 6, nearly —i,

ML sin (6, + XN —7—i) = mgacos (0,4 a), (11)
MI sin (B, + A" +14) = mgacos(d,+a), (12)

whence, as before,
MI(0,—0,—m—2%) = 2mygacosicos a, (13)

adding (8),
MI(0~0,+7n—280)+ M I(0,—6,—7—27) = 0,
or DO, —0,+7—2i)+ D (0,—0,—7—2%) = 0, (

—
—
v o
[N

whence we find the dip

Z.=])(01~62+?r)+D'(’03—64—7r)’ (16)
2D+20
where D and 7V are the tangents of the deflexions produced by the
needle in its first and second magnetizations respectively.
In taking observations with the dip circle the vertical axis is
carefully adjusted so that the plane bearings upon which the axis of

the magnet rests are horizontal in every azimuth. The magnet being

magnetized so that the end A dips, is placed with its axis on the
plane bearings, and observations are taken with the plane of the eirele
in the magnetic meridian, and with the graduated side of the circle
east. TEach end of the magnet is observed by means of reading
microscopes carried on an arm which moves concentric with the
dip circle. The cross wires of the microscope are made to coincide
with the image of a mark on the magnet, and the position of the
arm is then read off on the dip circle by means of a vernier.

‘We thus obtain an observation of the end 4 and another of the
end B when the graduations are east, It is necessary to observe
both ends in order to eliminate any error arising from the axle
of the magnet not being concentric with the dip circle,

The graduated side is then turned west, and two more observ-
ations are made.

The magnet is then turned round so that the ends of the axle
are reversed, and four more observations are made loocking at the
other side of the magnet.
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The magnetization of the magnet is then reversed so that the
end B dips, the magnetic moment is ascertained, and eight observa-
tions are taken in this state, and the sixteen observations combined
to determine the true dip.

462, It is found that in spite of the utmost care the dip, as thus
deduced from observations made with one dip circle, differs per-
ceptibly from that deduced from observations with another dip
circle at the same place. Mr. Broun has pointed out the effect
due to ellipticity of the bearings of the axle, and how to correet
it by taking observations with the magnet magnetized to different
strengths.

The principle of this method may be stated thus. We shall
suppose that the error of any one observation is a small quantity
not exceeding a degrec. We shall also suppose that some unknown
but regular force acts upon the magnet, disturbing it from its
true position.

If Z is the moment of this force, 6, the true dip, and 6 the
observed dip, then

L = MIsin (6—4,), (17)
= MI@0—-0), (18)
since 8 — 6, is small.

It is evident that the greater M becomes the nearer does the
needle approach its proper position. Now let the operation of
taking the dip be performed twice, first with the magnetization
equal to A7;, the greatest that the needle is capable of, and next
with the magnetization equal to A7,, a much smaller value but
sufficient to make the readings distinet and the error still moderate.
Let 0, and 6, be the dips deduced from these two sets of cobserv-
ations, and let Z be the mean value of the unknown disturbing
force for the eight positions of cach determination, which we shall
suppose the same for both determinations. Then

L = M I(6,—6) = MI(0,—0,). (19)

M, 6,— M0 _6,
Hence 0o =" 31 1 7

If we find that several experiments give nearly equal values for
I, then we may consider that 4, must be very nearly the true value
of the dip.

463.] Dr. Joule has recently constructed a new dip-circle, in
which the axis of the necedle, instead of rolling on horizontal agate
planes, is slung on two filaments of silk or spider’s thread, the ends

12

2, L=MM, I+ 2 (20)
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of the filaments being attached to the arms of a delicate balance.
The axis of the needle thus rolls on two loops of silk fibre, and
Dr. Joule finds that its freedom of motion is much greater than
when 1t rolls on agate planes.

In Fig. 18, NS is the needle, CC’ is its axis, consisting of a
straight eylindrical wire, and PCQ, P"C’¢) ure the filaments on which
the axis rolls. POQ is the
balance, consisting of a double
bent lever supported by a
wire, O O, stretched horizont-
ally between the prongs of
a forked piece, and having
a counterpoise £ which can
be screwed up or down, so
that the balance is in neutral
equilibrium about O 0.

In order that the needle
may be in neutral equilibrium
as the needle rolls on the
filaments the centre of gra-
vity must neither rise nor fall.
Hence the distance OC must
remain constant as the needle
rolls. This condition will be
fulfilled if the arms of the
balance OP and U@ are equal,
and if the filaments are at
right angles to the arms.

N Dr. Joule finds that the
Fig. 18.

needle should not be more than
five inches long. When it is eight inches long, the bending of the
needle tends to diminish the apparent dip by a fraction of a minute.
The axis of the needie was originally of steel wire, straightened by
being brought to a red heat while stretched by a weight, but
Dr. Joule found that with the new suspension it is not necessury
to use steel wire, for platinum and even standard gold are hard
enough.

The balance is attached to a wire OO about a foot long stretched
horizontally between the prongs of a fork. This fork is turned
round in azimuth by means of a circle at the top of a tripod which
supports the whola. Six complete observations of the dip can be
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obtained in one hour, and the average error of a single observation
1s a fraction of a minute of are. '

It is proposed that the dip needle in the Cambridge Physical
Laboratory shall be observed by means of a double image instru-
ment, consisting of two totally reflecting prisms placed as in
Tig. 19 and mounted on a vertical gradmated circle, so that the
plane of reflexion may be turned round a horizontal axis nearly
coinciding with the prolongation of the axis of the suspended dip-
necdle. The needle is viewed by means of a telescope placed
behind the prisms, and the two ends of the needle are seen together
as in Fig. 20. By turning the prisms about the axis of the vertical
circle, the images of two lines drawn on the needle may be made
to coincide. The inclination of the needle is thus determined from
the reading of the vertical circle.

Fig. 19. Fig. 20.

The total intensity 1 of the magnetic force in the line of dip may
be deduced as follows from the times of vibration 7y, 73, 75, 7
in the four positions already deseribed,

1724 1 1 1 1 }
= oMo {T+T+T+T '

The values of M and M’ must be found by the method of deflexion
and vibration formerly described, and A is the moment of inertia of
the magnet about its axle.

The observations with a magnet suspended by a fibre are so
much more accurate that it is usual to deduce the total force from
the horizontal force from the equation

I = Hsech,

where [/ is the total force, /7 the horizontal force, and @ the dip.
464.] The process of determining the dip being a tedious one, is
not suitable for determining the continuous variation of the magnetic
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force. The most convenient instrument for continuous observa-
tions is the vertical force magnetometer, which is simply a magnet
balanced on knife edges so as to be in stable equilibrium with its
magnetic axis nearly horizontal.

If Z is the vertical component of the magnetic force, A/ the
magnetic moment, and # the small angle which the magnetic axis
makes with the horizon

MZ = mga cos (a—d),
where m is the mass of the magmet, g the force of gravity, « the
distance of the centre of gravity from the axis of suspension, and
o the ungle which the plane through the axis and the centre of
gravity makes with the magnetic axis.

Hence, for the small variation of vertical force 87, there will be
a variation of the angular position of the magnet 36 such that

MdZ = mgasin(a—6)30.

In practice this instrument is not used to determine the absolute
value of the vertical force, but only to register its small variations.

For this purpose it is sufficient to know the absolute value of Z
when 6 = 0, and the value of %

The value of Z, when the horizontal force and the dip are known,
is found from the equation Z = H tan g, where ¢, is the dip and
A the horizontal force.

To find the deflexion due to a given variation of Z, take a magnet
and place it with its axis east and west, and with its centre at a
known distance 7, east or west from the declinometer, as in ex-
periments on deflexion, and let the tangent of deflexion be 2.

Then place 1t wilh ils axis vertical and with its centre at a
distance 7, above or below the centre of the vertical force mag-
netometer, and let the tangent of the deflexion produced in the
magnetometer be D,. Then, if the moment of the deflecting

magnet is 3, ) dz
M= Hr3D = 70 7530,
az 3 D,
Hence 0= 11}23 b,
The actual value of the vertical force at any instant is
. az
Z = ZO + 9 E’e ?

where Z, is the value of Z when 4 = 0.
For continuous observations of the variations of magnetic force
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at a fixed observatory the Unifilar Declinometer, the Bifilar Hori-
zontal Forece Magnetometer, and the Balance Vertical Force Mag-
netometer are the most convenient instruments.

At several observatories photographic traces are now produced on
prepared paper moved by clock work, so that a continuouns record
of the indications of the three instruments at every instant is formed.
These traces indicate the variation of the three rectangular com-
ponents of the force from their standard values. The declinometer
gives the force towards mean magnetic west, the bifilar magnet-
ometer gives the variation of the force towards magnetic north, and
the balance magnetometer gives the variation of the vertical force.
The standard values of these forces, or their values when these
instruments mdicate their several zeros, are deduced by frequent
observations of the absolute declination, horizontal force, and dip.
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CHAPTER VIIIL
ON TERRESTRIAL MAGNETISM.

465.] Our knowledge of Terrestrial Magnetism is derived from
the study of the distribution of magnetic force on the earth’s sur-
face at any one time, and of the changes in that distribution at
different times,

The magnetic force at any one place and time is known when
its three coordinates are known. These coordinates may be given
in the form of the declination or azimuth of the force, the dip
or inclination to the horizon, and the total intensity.

The most convenient method, however, for investigating the
general distribution of magnetic force on the earth’s surface is to
consider the magnitudes of the three components of the force,

X = Hcosd, directed due north,
Y = Hsind, directed due west, (1)
7 = Htané, directed vertically downwards,
where I denotes the horizontal force, & the declination, and 4
the dip.

If 7 is the magnetic potential at the earth’s surface, and if we
consider the earth a sphere of radius &, then
1 adv 1 aV av
o di’ r= acost dn’ Zzﬂ’ )
where /7 is the latitude, and A the longitude, and » the distance
from the centre of the earth.

A knowledge of ¥ over the surface of the earth may be obtained
from the observations of horizontal force alone as follows.

Let 7, be the value of 7 at the true north pole, then, taking
the line-integral along any meridian, we find,

A
V=af Xa147, 3

for the value of the potential on that meridian at latitude 4.
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. Thus the potential may be found for any point on the earth’s
surface provided we know the value of X, the northerly component
at every point, and 7, the value of 7 at the pole.

Since the forces depend nof on the ahsolute value of 7 but
on its derivatives, it is not necessary to fix any particular value
for 7.,

The value of 7 at any point may be ascertained if we know
the value of X along any given meridian, and also that of ¥ over
the whole surface.

1
Tet V= fXdl+ v, (4)
Ei

where the integration is performed along the given meridian from
the pole to the parallel Z, then

A
V=V+a| YecosldA, (5)
A

where the integration is performed along the parallel / from the
given meridian to the required point.

These methods imply that a complete magnetic survey of the
earth’s surface has been made, so that the values of X or of ¥
or of both are known for every point of the earth’s surface at a
given epoch. What we actually know are the magnetic com-
ponents at a certain number of stations. In the civilized parts of
the earth these stations are comparatively numerous ; in other places
there are large tracts of the earth’s surface about which we have
no data.

Magnetic Survey.

466.] Let us suppose that in a country of moderate size, whose
greatest dimensions are a few hundred miles, observations of the
declination and the horizontal force have been taken at a con-
siderable number of stations distributed fairly over the country.

‘Within this district we may suppose the value of 7 to be re-
presented with sufficient accuracy by the formula

V="Vyta(dl+d, A+ B2+ B,IA+4 B, A+ &), (6)
whence X= 4,4+ B+ B, (7)
Yeost= Ay+ By i+ B\ (8)

Let there be z stations whose latitudes are /, Z,, ... &c. and

longitudes Ap, Ay, &e., and let X and ¥ be found for each station.

Let by = %z(l), and A, = %2 @A), (9)
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{, and A, may be called the latitude and longitude of the central
station. Let

X, =2 3(X), and If()eosl():;lLE(Ycosl), (10)

then X, and ¥, are the values of X and Y at the imaginary central
station, then

X=X, +B,{({—8)+ By (A—Ap), (1n)

Yeosl = ¥yeosly+ B, (0—1L)+ B, (A—2p). (12)

We have 7 equations of the form of (11) and = of the form (12).
If we denote the probable error in the determination of X by §&
and that of Yeos/ by n, then we may caleulate £ and 5 on
the supposition that they arise from errors of observation of A
and 2.

Let the probable error of I/ be 4, and that of &, d, then since

dX = cos3.dH—Hsind . dj,
. £% = A% cos?d+d? I1? sin??.

Similarly n? = A%sin?d+d? H? cos?s.

If the variations of X and ¥ from their values as given by equa-
tions of the form (11) and (12) considerably exceed the probable
errors of observation, we may conclude that they are due to local
attractions, and then we have no reason to give the ratio of £ to g
any other value than unity.

According to the method of least squares we multiply the equa-
tions of the form (11) by 7, and those of the form (12) by £ to
make their probable error the same. We then multiply each
equation by the coefficient of one of the unknown quantities B,

B,, or B, and add the results, thus obtaining three equations from
which to find B,, B,, and B,.
Py = Bib+ Byby,
PP+ £2Q)) = By by + By (£20,+ 1% by) + B, €7 6y,
@y = By b, + Byt s
in which we write for counciseness,
by = Z(2)—nl? by =3S{IXN)—nlyr, b = (A% —nA?,
P, =30X)—nl X, Q, ==Y cosl)—niy ¥, cosl,,
Py, =3ZAX)—nAr X, @, = 2(AYcas )—ar, ¥, cos .
By caleulating B;, £,, and B,, and substituting in equations
(11) and (12), we can obtain the values of X and ¥ at any point
within the limits of the survey free from the local disturbances
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which are found to exist where the rock near the station is magnetic,
as most igneous rocks are.

Surveys of this kind can be made ounly in countries where mag-
netic instruments can be carried about and set up in a great many
stations. For other parts of the world we must be content to find
the distribution of the magnetic elements by interpolation between
their values at a few stations at great distances from each other.

467.] Let us now suppose that by processes of this kind, or
by the equivalent graphical process of constructing charts of the
lines of equal values of the magnetic elements, the values of X and
Y, and thence of the potential 7, are known over the whole surface
of the globe. The next step is to expand / in the form of a series
of spherical surface harmonies.

If the earth were magnetized uniformly and in the same direction
throughout its interior, ¥ wounld be an harmonie of the first degree,
the magnetic meridians would be great circles passing through two
magnetic poles diametrically opposite, the magnetic equator would
be a great circle, the horizontal force would be equal at all points
of the magnetic equator, and if 7/ is this constant value, the value
at any other point would be H = H,cos?’, where {” is the magnetic
latitude. The vertical force at any point would be Z = 2/ sin/’,
and if 6 is the dip, tan @ = 2tan/".

In the case of the earth, the magnetic equator is defined to be
the line of no dip. It is not a great circle of the sphere.

The magnetic poles are defined to be the points where there is
no horizontal force or where the dip is 90°. There are two such
points, one in the northern and one in the southern regions, but
they are not diametrically opposite, and the line joining them is
not parallel to the magnetic axis of the earth.

468.1 The magnetic poles are the points where the value of 7
on the surface of the earth is a maximum or minimum, or is
stationary.

At any point where the potential is a minimum the north end
of the dip-needle points vertically downwards, and if a compass-
needle be placed anywhere near such a point, the north end will
point towards that point,

At points where the potential is a maximum the south end of
the dip-needle points downwards, and the south end of the compass-
needle points towards the point.

If there are p minima of 7 on the earth’s surface there must be
p—1 other points, where the north end of the dip-needle peints
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downwards, but where the compass-needle, when carried in a circle
round the point, instead of revolving so that its north end points
constantly to the centre, revolves in the opposite direction, so as to
turn sometimes its north end and sometimes its south end towards
the point.

If we call the points where the potential is a minimum true
north poles, then these other points may be called false north poles,
because the compass-needle is not true to them. If there are p
true north poles, there must be p—1 false north poles, and in like
manner, if there are ¢ true south poles, there must be g—1 fulse
south poles. The number of poles of the same name must be odd,
so that the opinton at one time prevalent, that there are two north
poles and two south poles, is erroneous. According to Gauss there
is in fact only one true north pole and one true south pole on
the earth’s surface, and therefore there are no false poles. The line
joining these poles is not a diamecter of the earth, and it is not
parallel to the earth’s magnetic axis.

469.] Most of the early investigators into the nature of the
earth’s magnetism endeavoured to express it as the result of the
action of one or more bar magnets, the position of the poles of
which were to be determined. Gauss was the first to express the
distribution of the earth’s magnetism in a perfectly general way by
expanding its potential in a series of solid harmonies, the coefficients
of which he determined for the first four degrees, These coeffi-
clents are 24 in number, 3 for the first degree, 5 for the second,
7 for the third, and 9 for the fourth. All these terms are found
necessary in order to give a tolerably accurate representation of
the actual state of the earth’s magnetism,

1o find what Part of the Observed Magnetic Force is due to External
and what to Internal Couses.

470.] Let us now suppose that we have obtained an expansion
of the magnetic potential of the earth in spherical harmonics,
consistent with the actual direction and magnitude of the hori-
zontal force at every point on the earth’s surface, then Gauss has
shewn how to determine, from the observed vertical force, whether
the magnetic forces are due to causes, such as magnetization or
electric currents, within the carth’s surface, or whether any part
is directly due to causes exterior to the earth’s surface.

Let 7 be the actual potential expanded in a double series of
spherical harmonies,
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¥ AN
Vi=d - +&e.+4(-) " |
roo2 po—(itl
+ B, ({;) +&c. + B; ({;) .

The first series represents the part of the potential due to causes
exterior to the ecarth, and the seccond series represents the part due
to causes within the earth.

The observations of horizontal force give us the sum of these
series when # = @, the radius of the ecarth. The term of the order < 1s

Vo= 4,+ B;.
The observations of vertical force give us
dyv
i = Ti; ]

and the term of the order ¢ in 2 7 is
aZ, =14, —(G+1)D,.
Hence the part due to external causes 1s
G4+1) Ftat;

A, = a
¢ 2¢41
and the part due to causes within the earth is
WV —aZ,
Sl AR

The expansion of ¥ has hitherto been caleulated only for the
mean value of 7 at or near certain epochs. No appreciable part
of this mean value appears to be due to causes external to the
earth.

471.] We do not yet know enough of the form of the expansion
of the solar and lunar parts of the variations of 7 to determine
by this method whether any part of these variations arises from
magnetie force acting from without. It is certain, however, as
the calculations of MM. Stoney and Chambers have shewn, that
the principal part of these variations cannot arise from any direct
magnetic action of the sun or moon, supposing these bodies to be
magnetic *.

472.] The principal changes in the magnetic force to which
attention has been directed are as follows.

* Professor Hornstein of Prague has discovered a periodic change in the magnetic
clements, the period of which is 26.83 days, almost exactly equal to that of the
synodic revolution of the sun, as deduced from the observation of sun-spots near his
equator. This method of discovering the time of rotation of the unseen solid Ludy of
the sun by its effects on the magnetic needle is the first instalment of the repayment

by Magnetism of its debt to Astronomy. Akad., Wien, June 15, 1871. See I'roc,
K. S, Nov.16,1871.
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I. Z%e more Regular Variations.

(1) The Solar variations, depending on the hour of the day and
the time of the year.

(2) The Lunar variations, depending on the moon’s hour angle
and on her other elements of position.

(3) These variations do not repeat themselves in different years,
but seem to be subject to a variation of longer period of about
eleven years.

(4) Besides this, there is a secular alteration in the state of the
earth’s magnetism, which has been going on ever since magnetic
observations have been made, and is producing changes of the
magnetie elements of far greater magnitude than any of the vara-
tions of small period.

1I. The Disturbances.

473.7 Besides the more regular changes, the magnetic elements
are subject to sudden disturbances of greater or less amount. It
is found that these disturbances are more powerful and frequent
at one time than at another, and that at times of great disturbance
the laws of the regular variations are masked, though they are very
distinet at times of small disturbance. Hence great attention has
been paid to these disturbances, and it has been found that dis-
turbances of a particular kind are more likely to occur at certain
times of the day, and at certain seasons and intervals of time,
though each individual disturbance appears quite irregular. Besides
these more ordinary disturbances, there are occasionally times of
excessive disturbance, in which the magnetism is strongly disturbed
for a day or two. These are called Magnctic Storms. Individual
disturbances have been sometimes observed at the same instant
in stations widely distant.

Mr. Airy has found that a large proportion of the disturbances
at Greenwich correspond with the electric currents collected by
electrodes placed in the earth in the neighbourhood, and are such
as would be directly produced in the magmnet if the earth-current,
retaining its actual direction, were conducted through a wire placed
underneath the magnet.

It has been found that there is an epoch of maximum disturbance
every eleven years, and that this appears to coincide with the epoch
of maximum number of spots in the sun.

474.] The field of investigation into which we are intreduced
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by the study of terrestrial magnetism is as profound as it is ex-
tensive.

‘We know that the sun and moon act on the earth’s magnetism.
Tt has been proved that this action cannot be explained by sup-
posing these bodies magnets. The action is therefore indirect. In
the case of the sun part of it may be thermal action, but in the
case of the moon we cannot attribute it to this cause. Is it pos-
sible that the attraction of these bodies, by causing strains in the
interior of the earth, produces (Art. 447) changes in the magnetism
already cxisting in the earth, and so by a kind of tidal action causes
the semidiurnal variations ?

But the amount of all these changes is very small compared with
the great secular changes of the earth’s magnetism.

‘What cause, whether exterior to the earth or in its inner depths,
produces such enormous changes in the earth’s magnetism, that its
magmnetic poles move slowly from one part of the globe to another ?
‘When we cousider that the intensity of the magnetization of the
great globe of the carth is quite comparable with that which we
produce with much difficulty in our steel magnets, these immense
changes in so large a body force us to conclude that we are not yet
acquainted with one of the most powerful agents in nature, the
scene of whose activity lies in those inner depths of the earth, to
the knowledge of which we have so few means of access.
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PART 1V.

ELECTROMAGNETISM.

CHAPTER L
ELECTROMAGNETIC FORCE.

475.] Ir had been noticed by many different cbservers that in
certain cases magnetism is produced or destroyed in needles by
clectric discharges through them or near them, and conjectures
of various kinds had been made as to the relation between mag-
netism and electricity, but the laws of these phenomena, and the
form of these relations, remained ecntirely unknown till Hans
Christian Orsted ¥, at a private lecture to a few advanced students
at Copenhagen, observed that a wire connecting the ends of a
voltaic battery affected a magmnet in its vicinity. This discovery
he published in a tract entitled Faperimenta circa effectum Conflictds
Lilectrici in Acum Magneticam, dated July 21, 1820.

Experiments on the relation of the magnet to bodies charged
with electricity had been tried without any result till Orsted
endeavoured to ascertain the effect of a wire Zeafed by an electric
current. He discovered, however, that the current itself, and not
the heat of the wire, was the cause of the action, and that the
¢ electrie conflict acts in a revolving manner,” that is, that a magnet
placed near a wire transmitting an electric current tends to set
itself perpendicular to the wire, and with the same end always
pointing forwards as the magnet is moved round the wire.

476.] It appears therefore that in the space surrounding a wire

* Sce another account of (Orsted’s diseovery in a letter from Professor Hansteen in
the Life of Faradey by Dr. Bence Jones, vol. ii. p. 395.
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trapsmitting an electric current a magnet is acted on by forces
depending on the position of the wire and on the strength of the
current. The space in which these forces aset may therefore be
considered as a magnetic field, and we may study it in the same
way as we have already studied the field in the neighbourhood of
ordinary magnets, by tracing the course of the lines of magnetic
force, and measuring the intensity of the force at every point.

477.] Let us begin with the case of an indefinitely long straight
wire carrying an electrie current.  If a man were to place himself
in imagination in the position of the wire, so that the current
should flow from his head to his feet, then a magnet suspended
freely before him would set itself so that the end which points north
would, under the action of the current, point to his right hand.

The lines of magnetic force are everywhere at right angles to

planes drawn through the wire, and are there- >
fore circles ecach in a plane perpendicular to
the wire, which passes through its centre. T

The pole of a magnet which points north, if
carried round one of these circles from left to
right, would experience a force acting always
in the direction of its motion. The other
pole of the same magnet would experience ]
a force in the opposite direetion.

478.] To compare these forces let the wire
be supposed vertical, and the current a de-
scending one, and let a magnet be placed on
an apparatus which is free to rotate about a
vertical axis coinciding with the wire. It

18 found that under these circumstances the :
current has no eflect in causing the rotation Fig. 21.

of the apparatus as a whole about itself as an axis. Ilence the
action of the vertical current on the two poles of the magnet is
such that the statical moments of the two forces about the current
as an axis are equal and opposite. Let m, and m, be the strengths
of the two poles, , and 7, their distances from the axis of the wire,
T, and 7, the intensities of the magnetie force due to the current at
the two poles respectively, then the force on s, is =, 7}, and
since it is at right angles to the axis its moment is m 7).
Similarly that of the force on the other pole is m, T, 7,, and since
there is no motion observed,

my Ty +my Tyry = 0.
VOL. IL. K
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But we know that in all magnets
my +my, = 0.

Hence Tir = Tyry,
or the electromagnetic force due to a straight current of infinite
length is perpendicular to the current, and varies inversely as the
distance from it.

479.] Since the product 77 depends on the strength of the
current it may be employed as a measure of the current. This
method of measurement is different from that founded upon elec-
trostatic phenomena, and as it depends on the magnetic phenomena
produced by electric currents it is called the Electromagnetic system
of measurement. In the electromagnetic system if ¢ is the current,

Tr = 24.

480.] If the wire be taken for the axis of ¢, then the rectangular

components of 7' are
z

X=—2Z.lz) Y:Zi—z, Z=0.
r r

Here Xdx + ¥Ydy+ Zdz is a complete differential, being that of

.y
i

27 tan +C.

Ilence the magnetic force in the field can be deduced from a
potential function, as in several former instances, but the potential
is in this case a function having an infinite series of values whose
common difference is 4wé.  The differential coeflicients of the
potential with respeet to the ecoordinates have, however, definite and
single values at every point.

The existence of a potential function in the field near an electric
current is not a self-evident result of the principle of the con-
servation of energy, for in all actual currents there is a continual
expenditure of the electric energy of the battery in overcoming the
resistance of the wire, so that unless the amount of this expenditure
were aceurately known, it might be suspected that part of the
energy of the battery may be employed in causing work to be
done on a magnet moving in a cycle. In fact, if a magnetic pole,
m, moves round a closed curve which embraces the wire, work
1s actually done to the amount of 4 wmi. It is only for closed
paths which do not embrace the wire that the line-integral of the
force vanishes. We must therefore for the present consider the
law of force and the existence of a potential as resting on the
evidence of the experiment already described.
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481.] If we consider the space surrounding an infinite straight
line we shall see that it is a cyclic space, because it returus into
itself. If we now conccive a plane, or any other surfuce, com-
mencing at the straight line and extending on one side of it
to infinity, this surface may be regarded as a diaphragm which
reduces the eyclic space to an acyclic one. 1f from any fixed point
lines be drawn to any other point without cutting the diaphragm,
and the potential be defined as the line-integral of the force taken
along one of these lines, the potential at any point will then have
g single definite value.

The magnetic field is now identical in all respects with that due
to a magnetic shell coinciding with this surface, the strength of
the shell being . This shell is bounded on one edge by the infinite
straight line. The other parts of its boundary are at an infinite
distance from the part of the field under consideration.

482.] In all actual experiments the current forms a closed circuit
of finite dimensions. We shall therefore compare the magnetic
action of a finite circuit with that of a magnetic shell of which the
circuit is the bounding edge.

It has been shewn by numerous experiments, of which the
earliest are those of Ampére, and the most accurate those of Weber,
that the magnetic action of a small plane circuit at distances which
are great compared with the dimensions of the cireuit is the same
as that of a magnet whose axis is normal to the plane of the circuit,
and whose magnetic moment is equal to the area of the circuit
multiplied by the strength of the current.

If the circuit be supposed to be filled up by a surface bounded
by the circuit and thus forming a diaphragm, and if a magnetic
shell of strength ¢ coinciding with this surface be substituted for
the electric current, then the magnetic action of the shell on all
distant points will be identical with that of the current.

483.] Hitherto we have supposed the dimensions of the circuit
to be small compared with the distance of any part of it from
the part of the field examined. We shall now suppose the circuit
to be of any form and size whatever, and examine its action at any
point P not in the conducting wire itself. The following method,

hich has important geometrical applications, was introduced by
Ampére for this purpose.

Conceive any surface § bounded by the circuit and not passing
through the point £. On this surface draw two series of lines
erossing each other so as to divide it into elementary portions, the

K 2
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dimensions of which are small compared with their distance from
P, and with the radii of curvature of the surface.

Round each of these elements conceive a current of strength i
to flow, the direction of circulation being the same in all the ele-
ments as 1t s in the original circuit.

Along every line forming the division between iwo contiguous
elements two equal currents of strength ¢ flow in opposite direc-
tions.

The effeet of two equal and opposite currents in the same place
is absolutely zero, in whatever aspect we consider the currents.
Hence their magnetic effect is zero. The only portions of the
elementary circuits which are not neutralized in this way are those
which ecoincide with the original circuit. The total effect of the
elementary circuits is therefore equivalent to that of the original
eircuit.

484.] Now since each of the clementary cirenits may be con-
sidered as a small plane circuit whose distance from £ is great
compared with its dimensions, we may substitute for it an ele-
* mentary magnetic shell of strength ¢ whose bounding edge coincides
with the elementary circuit. The magnetic effect of the elementary
shell on P is equivalent to that of the elementary circuit. The
whole of the elementary shells constitute a magnetic shell of
strength 7, colnciding with the surface § and bounded by the
original eircuit, and the magnetic action of the whole shell on P
is equivalent to that of the cireuit.

It is manifest that the action of the circuit is independent
of the form of the surface §, which was drawn in a perfectly
arbitrary manner so as to fill it up. We see from this that the
action of a magnetic shell depends only on the form of its edge
and not on the form of the shell itself. This result we obtained
before, at Art. 410, but it is instructive 1o see how it may be
deduced from electromagnetie considerations.

The magnetic force due to the ecircuit at any point is therefore
identical in magnitude and direction with that due to a magnetic
shell bounded by the circuit and not passing through the point,
the strength of the shell being numerically equal to that of the
current. The direction of the current in the circuit is related to
the direction of magnetization of the shell, so that if a man were to
stand with his feet on that side of the shell which we call the
positive side, and which tends to point to the north, the current in
front of lim would be from right to left.
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485.] The magnetic potential of the cirenit, however, differs
from that of the magnetic shell for those points which are in the
substance of the magnetic shell.

If w 1s the solid angle subtended at the point 2 by the magnetic
shell, reckoned positive when the positive or austral side of the shell
is next to P, then the magnetic potential at any point not in the
shell itself is w¢p, where ¢ is the strength of the shell. At any
point in the substance of the shell itself we may suppose the shell
divided into two parts whose strengths are ¢; and ¢,, where
¢+ ¢, = ¢, such that the point is on the positive side of ¢, and
on the negative side of ¢,. The potential at this point is

© (P +dy) — 47 by

On the negative side of the shell the potential becomes ¢ (0 —4 ).
In this case therefore the potential is continuous, and at every
point has a single determinate value. 1In the case of the electric
circuit, on the other hand, the magnetic potential at every point
not in the conducting wire itself is equal to 7w, where 7 is the
strength of the current, and o is the solid angle subtended by the
circuit at the point, and is reckoned positive when the current, as
seen from P, circulates in the direction opposite to that of the hands
of a watch.

The quantity 1w is a function having an infinite series of values
whose common difference is 4 wi. The differential coeflicients of
tw with respect to the coordinates have, however, single and de-
terminate values for every point of space.

486.7 If a long thin flexible solenoidal magnet were placed in
the neighbourhood of an electrie eircuit, the north and south ends
of the solenoid would tend to move in opposite directions round
the wire, and if they were free to obey the magnetic force the
magnet would finally become wound round the wire in a close
coil. If it were possible to obtain a magnet having only one pole,
or poles of unequal strength, such a magnet would be moved round
and round the wire continually in one direction, but since the poles
of every magnet are equal and opposite, this result can never occur.
Faraday, however, has shewn how to produce the continuous rotation
of one pole of a magnet round an electrie current by making it
possible for one pole to go round and round the current while
the other pole does not. That this process may be repeated in-
definitely, the body of the magmnet must be transferred from oue
side of the current to the other once in cach revolution. To do
this without interrupting the low of electricity, the current is split
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into two branches, so that when one branch is opened to let the
magnet pass the current continues to flow through the other.
Faraday used for this purpose a eircular trough of mercury, as
shewn in Fig. 23, Art. 491. The eurrent enters the trough through
the wire 4.8, it is divided at B, and after flowing through the arcs
BQP and BEP it unites at P, and leaves the trough through the
wire 270, the cup of mercury O, and a vertical wire beneath O,
down which the current flows.

The magnet {not shewn in the figure) is mounted so as to be
capable of revolving about a vertical axis through O, and the wire
OPF revolves with it. The body of the magnet passes through the
aperture of the trough, one pole, say the north pole, being beneath
the plane of the trough, and the other above it. As the magnet
and the wire OP revolve about the vertical axis, the current is
gradually transferred from the branch of the trough which lies in
front of the magnet to that which lies behind it, so that in every
complete revolution the magnet passes from one side of the current
to the other. The north pole of the magnet revolves about the
descending current in the direction N.E.S.W. and if o, " are the
solid angles (irrespective of sign) subtended by the circular trough
at the two poles, the work done by the electromagnetic force in a
complete revolution is

mi (47— —a’),
where m is the strength of either pole, and 7 the strength of the
current,

487.1 Let us now endeavour to form a notion of the state of the
magnetic field near a lincar electric cireuit.

Let the value of o, the solid angle subtended by the cireuit,
be found for every point of space, and let the surfaces for which
@ is constant be described. These surfaces will be the equipotential
surfaces. Each of these surfaces will be bounded by the circuit,
and any two surfaces, w; and w,, will meet in the circuit at an
angle % (0, —w,).

Figure XVIII, at the end of this volume, represents a section
of the equipotential surfaces due to a circular current. The small
circle represents a section of the condueting wire, and the hori-
zontal line at the bottom of the figure is the perpendicular to the
plane of the circular current through its centre. The equipotential
surfaces, 24 of which are drawn corresponding to a series of values

of w differing by g; are surfaces of revolution, having this line for
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their common axis. They are evidently oblate figures, being flat-
tened in the direction of the axis. They meet each other in the line
of the circuit at angles of 15°.

The force acting on a magnetic pole placed at any point of an
equipotential surface is perpendicular to this surface, and varies
inversely as the distance between consecutive surfaces. The closed
curves surrounding the section of the wire in IYig. XVIII are the
lines of force. They are copied from Sir W. Thomson’s Paper on
*Vortex Motion*.” See also Art. 702,

Action of an Electric Circuit on any Magnetic System.

488.] We arc now able to deduce the action of an electric circuit
on any magnetic system in its neighbourhood from the theory of
magnetic shells. For if we construct a magnetic shell, whose
strength is numerically equal to the strength of the current, and
whose edge coincides in position with the circuit, while the shell
itself does not pass through any part of the magnetic system, the
action of the shell on the magnetic system will be identical with
that of the electric circuit.

Reaction of the Magnetic System on the Electric Circuit.

489.] From this, applying the principle that action and reaction
are equal and opposite, we conclude that the mechanical action of
the magnetic system on the electric circuit is identical with its
aclion on a magnetic shell having the circuit for its edge.

The potential energy of a magnetic shell of strength ¢ placed
in a fleld of magnetic force of which the potential is 7, is, by

Art. 410,
M= ¢/f(z"”/ 'fZV s,

where 7, m, n are the direction-cosmes of the normal drawn from the
positive side of the element 48 of the shell, and the integration
is extended over the surface of the shell.

Now the surface-integral

N:f[(la+mb+7zc) as,

where a, &, ¢ arc the components of the magnetic induetion, re-
presents the quantity of magnetic induction through the shell, or,

* Trans. R. 8. Edin., vol. xxv. p. 217, (1869).
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in the language of Faraday, the number of lines of magnetic in-
duction, reckoned algebraically, which pass through the shell from
the negative to the positive side, lines which pass through the
shell in the opposite direction being reckoned negative.

Remembering that the shell does not belong 1o the magnetic
system to which the potential 7 is due, and that the magnetic
force is therefore equal to the magnetic induction, we have

Y
T ds’ Ty T de’
and we may write the value of J7,
M=—¢N

If 32, represents any displacement of the shell, and X, the force
acting on the shell so as to aid the displacement, then by the
principle of conservation of energy,

X Sz 4+dM =0,
3N
or X =4 7

We have now determined the nature of the force which cor-
responds to any given displacement of the shell. Tt aids or resists
that displacement accordingly as the displacement inecreases or
diminishes &, the number of lines of induction which pass throug
the shell. ‘

The same is true of the equivalent electric circuit. Any dis-
placement of the circuit will be aided or resisted accordingly as it
increases or diminishes the number of lines of induction which pass
through the circuit in the positive direction.

We must remember that the positive direction of a line of
magnetic induction 1s the direction in which the pole of a magnet
whieh points north tends to move along the line, and that a line
of induction passes through the circuit in the positive direction,
when the direction of the line of induction is related to the
direction of the current of vitreous electricity in the circuit as
the longitudinal to the rotational motion of a right-handed screw.
See Art. 23.

490.] It is manifest that the force corresponding to any dis-
placement of the circuit as a whole may be deduced at once from
the theory of the magnetic shell. But this is not all. If a portion
of the circuit is flexible, so that it may be displaced independently
of the rest, we may make the edge of the shell capable of the same
kind of displacement by cutting up the surface of the shell into
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a suflicient number of portions connected by flexible joints. Hence
we conclude that if by the displacement of any portion of the circuit
in a given direction the number of lines of induction which pass
through the circuit can be increased, this displacement will be aided
by the electromagnetic force acting on the eircuit.

Every portion of the circuit therefore is acted on by a force
urging it across the lines of magnetic induction so as to include
a greater number of these lines within the embrace of the circuit,
and the work done by the force during this displacement is
numerically equal to the number of the additional lines of in-
duction multiplied by the strength of the current.

Let the element #s of a circuit, in which a current of strength
¢ is flowing, be moved parallel to itself through a space dz, it will
sweep out an area in the form of a parallelogram whose sides are
parallel and equal to ds and 3 respectively.

If the magnetic induction is denoted by B, and if its direction
makes an angle ¢ with the normal to the parallelogram, the value
of the increment of & corresponding to the displacement is found
by multiplying the area of the parallelogram by B cose. The result
of this operation is represented geometrically by the volume of a
parallelepiped whose edges represent in magnitude and direction
%2, ds, and B, and it is to be reckoned positive if when we point
in these three directions in the order here given the pointer
moves round the diagonal of the parallelepiped in the direction of
the hands of a watch, The volume of this parallelepiped is equal
to Xdaz.

If 6 is the angle between ds and B, the avea of the parallelogram
15 ds.Bsind, and 1if 5 is the angle which the displacement 3z
makeg with the normal to this parallelogram, the volume of the
parallelepiped is .

ds . Bsinf.drcosn =3N.

Now Xz =id3 N =ids.Bsinbdxcosy,
and X =1ids.Bsinbcosy
is the force which urges ds, resolved in the direction dz.

The direction of this force is therefore perpendicular to the paral-
lelogram, and is equal to 7.ds. B sin 6.

This is the area of a parallelogram whose sides represent in mag-
nitude and direction ¢ds and 8. The force acting on s is therefore
represented in magnitude by the urea of this parallelogram, and
in direction by a normal to its plane drawn in the direction of the
longitndinal motion of a right-handed screw, the handle of which
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is turned from the dircetion of the current ¢ds to that of the
magnetic induction B.

We may express in the language of
Quaternions, both the direction and
the magnitude of this force by saying
that it is the vector part of the result
of multiplying the vector ids, the
element of the current, by the vector

C"OIJI)E'I‘

B, the magnetic induction.

491.] We have thus completely de-
termined the force which acts on any
portion of an eleetric circuit placed in
a magnetic field. - If the circuit is
moved in any way so that, after assuming various forms and

Zinl_‘
Fig. 22.

positions, it returns to its original place, the strength of the
current remaining constant during the motion, the whole ‘amount
of work done by the electromagnetic forces will be zero. Since
this is true of any cycle of motions of the circuit, it follows that
it i1s Impossible to maintain by electromagnetic forces a motion
of continuous rotation in any part of a linear circuit of constant
strength against the resistance of friction, &e.

It is possible, however, to produce continuous rotation provided
that at some part of the course of the electric current it passes
from one conductor to another which slides or glides over it.

When in a circuit there is sliding contact of a conductor over
the surface of a smooth solid or
a fluid, the circuit can no longer
be considered as a single linear
circuit of constant strength, but
must be regarded as a system of
4 two or of some greater number

of eircuits of variable strength,
the current being so distributed
among them that those for
which W is increasing have

Fig. 3.

currents in the positive direc-
tion, while those for which & is diminishing have currents in the
negative direction.
Thus, in the apparatus represented in Fig. 23, 02 is a moveable
conductor, one end of which rests in a cup of mercury O, while the
other dips into a eircular trough of mercury concentrie with O,

IRIS - LILLIAD - Université Lille 1



492.] CONTINUOUS ROTATION. 139

The current ¢ enters along 4 B, and divides in the circular trough
into two parts, one of which, #, flows along the arec 5 P, while the
other, 7, flows along BAP. These currents, uniting at P, flow
along the moveable conductor 0 and the electrode OZ to the zine
end of the battery. The strength of the current along OP and 0Z
is @#+y or i

Here we have two cireuits, £BQP0Z, the strength of the current
in which is #, flowing in the positive direetion, and 4 BRPOZ, the
strength of the current in which is gz, flowing in the negative
direction.

Let @ be the magnetic induction, and let it be in an upward
direction, normal to the plane of the circle.

While O moves through an angle 9 in the direction opposite
to that of the hands of a watch, the area of the first circuit increases
by $0P2. 8, and that of the second diminishes by the same quantity.
Since the strength of the current in the first circuit is @, the work
done by it 18 }z.0P2.0.%B, and since the strength of the second
1s —z, the work done by it is $ 7. OFP% 8 B. The whole work done
1s therefore

(40P 0B or 1:.0P2.0%,
depending only on the strength of the current in £0O. Hence, if
¢ is maintained constant, the arm OF will be carried round and
round the circle with a uniform force whose moment is 4 ¢.0P? B.
If, as in northern latitudes, B acts downwards, and if the current
is inwards, the rotation will be in the negative direction, that is,
in the direction PQBLE.

492.7 We are now able to pass from the mutual action of
magnets and currents to the action of one current on another.
For we know that the magnetic properties of an eleetrie circuit C),
with respeet to any magnetic system Af,, are identical with those
of a magnetic shell §;, whose edge coincides with the ecircuit, and
whose strength is numerically equal to that of the electric current.
Let the magnetic system A, be a magnetic shell §,, then the
mutual action between §; and §, is identical with that between S,
and a circuit C,, coinciding with the edge of §, and equal in
numerical strength, and this latter action is identical with that
between C; and C,.

Hence the mutual action between two circuits, €, and C,, is
identical with that between the corresponding magnetic shells §;
and §,.

We have already investigated, in Art. 423, the mutnal action
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of two magnetic shells whose edges are the closed curves ¢, and s,.

If we make M= f f T LS e sy,
(¢} 0

r

where € 1s the angle between the directions of the elements ds; and
ds,, and 7 i1s the distance between them, the integration being
extended once round s, and once round s,, and if we call M/ the
potential of the two closed curves s, and s,, then the potential energy
due to the mutual action of two magnetic shells whose strengths
are 7, and 2, bounded by the two circuits 1s

—iyiy M,
and the force X, which aids any displacement 8z, is

) %

1l 52

The whele theory of the force acting on any portion of an electric
circuit duc to the action of another electric circuit may be deduced
from this result.

493.] The method which we have followed in this chapter is
that of Faraday. Instead of beginning, as we shall do, following
Ampére, in the next chapter, with the direct action of a portion
of one circuit on a portion of another, we shew, first, that a circuit
produces the same effect on a magnet as a magnetic shell, or, in
other words, we dctermine the nature of the magnetic ficld due
to the circuit. We shew, secondly, that a circuit when placed in
any magnetic field experiences the same force as a magnetic shell.
We thus determine the force acting on the circuit placed in any
magnetic field. Lastly, by supposing the magnetic field to be due
to a second eleetric eircuit we determine the action of one circuit
on the whole or any portion of the other.

494.7 Let us apply this method to the case of a straight current
of infinite length acting on a portion of a parallel straight con-
ductor.

Let us suppose that a current 7 in the first conductor is flowing
verticully downwards. In this case the end of a magnet which
points north will point to the right-hand of a man locking at 1t
from the axis of the current.

The lines of magnetic induction are therefore horizontal circles,
having their centres in the axis of the current, and their positive
direction is north, east, south, west.

Let another descending vertical current be placed due west of
the first. The lines of magnetic induction due to the first current
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are here directed towards the north. The direction of the force
acting on the second current is to be determined by turning the
handle of a right-handed screw from the madir, the direction of
the current, to the north, the direction of the magnetic induction,
The screw will then move towards the east, that is, the force acting
on the second current is directed towards the first current, or, in
general, since the phenomenon depends only on the relative position
of the currents, two parallel currents in the same direction attract
each other,

In the same way we may shew that two parallel currents in
opposite directions repel one another.

495.] The intensity of the magnetic induction at a distance 7
from a straight current of strength ¢ is, as we have shewn in
Art. 479, i
al.

po

Hence, a portion of a second conductor parallel to the first, and
carrying a current 7’ in the same direction, will be atiracted towards
the first with a force o

: =2,
r
where 2 is the length of the portion considered, and 7 is its distance
from 1ihe first conductor.

Since the ratio of @ to » 1s a numerical quantity independent of
the absolute value of either of these lines, the product of two
currents measured in the electromagnetic system must be of the
dimensions of a foree, hence the dimensions of the unit current are

] = [F3] = [M3Ls 1)

496.7 Another method of determining the direction of the force
which acts on a current is to consider the relation of the magnetic
action of the current to that of other currents and magnets.

If on one side of the wire which carries the current the magnetic
action due to the current is in the same or nearly the same direction
as that due to other currents, then, on the other side of the wire,
these forces will be in opposite or nearly opposite directions, and
the force acting on the wire will be from the side on which the
forces strengthen each other to the side on which they oppose each
other.

Thus, if a descending current is placed in a field of magnetic
force directed towards the mnorth, its magnetic action will be to the
north on the west side, and to the south on the east side. Ilence
the forces strengthen each other on the west side and oppose each
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other on the east side, and the current will therefore be acted
on by a foree from west to cast. Sece Fig. 22, p. 138.

In Fig. XVII at the end of this volume the small circle represents
a section of the wire carrying a descending current, and placed
in a uniform field of magnetic force acting towards the left-hand
of the figure. The magnetic force is greater below the wire than
above 1t. It will therefore be urged from the bottom towards the
top of the figure.

497.] 1f two currents are in the same plane but not parallel,
we may apply this principle. Let one of the conductors be an
infinite straight wire in the plane of the paper, supposed horizontal.
On the right side of the current the magnetic force acts downward,
and on the left side it acts upwards. The same is true of the mag-
netic force due to any short portion of a second current in the same
plane. If the second current is on the right side of the first, the
magnetic forces will strengthen each other on its right side and
oppose each other on its left side. Hence the second current will
be acted on by a force urging it from its right side to its left side,
The magnitude of this force depends only on the position of the
second current and not on its direction. If the second current is
on the left side of the first it will be urged from left to right.

Hence, if the second current is in the same direction as the first
it is attracted, if in the opposite direction it is repelled, if it flows
at right angles to the first and away from 1it, it is urged in the
direction of the first current, and if it flows toward the first current,
it is urged in the direction opposite to that in which the first
current flows.

In considering the mutlual action of two currents it is not neces-
sary to bear in mind the relations betwecen electricity and magnetism
which we have endeavoured to illustrate by means of a right-handed
screw. Even if we have forgotten these relations we shall arrive
at correct results, provided we adhere consistently to one of the two
possible forms of the relation.

498.] Lel us now bring together the magnetic phenomena of
the electrie circuit so far as we have investigated them.

We may conceive the electric eircuit to consist of a voltaic
battery, and a wire connecting its extremities, or of a thermoclectric
arrangement, or of a charged Leyden jar with a wire connecting its
positive and negative coatings, or of any other arrangement for
producing an electric current along a definite path.

The current produces magnetic phenomena in its neighbourhood.
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If any closed curve be drawn, and the line-integral of the
magnetic force taken completely round it, then, if the closed curve
is not linked with the circuit, the line-integral is zero, but if it
is linked with the circuit, so that the current ¢ flows through the
closed curve, the line-integral is 4 7 ¢, and is positive if the direction
of integration round the closed curve would coincide with that
of the hauds of a watch as seen by a person passing through it
in the direction in which the clectric current flows. 'To a person
moving along the closed curve in the direction of integration, and
passing through the electric circuit, the direction of the current
would appear to be that of the hands of a watch. We may express
this in another way by saying that the relation between the direc-
tions of the two closed curves may be expressed by describing a
right-handed serew round the eleetrie circuit and a right-handed
screw round the closed curve. If the direction of rotation of the
thread of either, as we pass along it, coincides . with the positive
direction in the other, then the line-integral will be positive, and
in the opposite case it will be negative.

Fig. 24.

Relation between the electric current and the lines of magnetic induction indicated
by a right-handed screw.

499.] Note.—The line-integral 4 =+ depends solely on the quan-
tity of the current, and not on any other thing whatever. It
does not depend on the nature of the conductor through which
the current is passing, as, for Instance, whether it be a metal
or an electrolyte, or an imperfect conductor. We have reason
for believing that even when there is no proper conduction, but
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merely a variation of electric displacement, as in the glass of a
Leyden jar during charge or discharge, the magnetic effect of the
electric movement is precisely the same.

Again, the value of the line-integral 4 w¢ does not depend on
the nature of the medium in which the closed curve is drawn.
It is the same whether the closed curve is drawn entirely through
air, or passes through a magnet, or soft iron, or any other sub-
stance, whether paramagnetic or diamagunetie.

500.] When a circuit is placed in a magnetic field the mutual
action between the current and the other constituents of the field
depends on the surface-integral of the magnetic induction through
any surface bounded by that circuit. If by any given motion of
the circuit, or of part of it, this surface-integral can be increased,
there will be a mechanical force tending to move the conductor
or the portion of the conductor in the given manner.

The kind of motion of the conductor which inereases the surface-
integral i1s motion of the conductor perpendicular to the direction
of the current and across the lines of induction.

If a parallelogram be drawn, whose sides are parallel and pro-
portional to the strength of the current at any point, and to the
magnetic induction at the same point, then the force on unit of
length of the conductor is numerically equal to the area of this
parallelogram, and is perpendicular to its plane, and acts in the
direction in which the motion of turning the handle of a right-
handed screw from the direction of the current to the direction
of the magnetic induction would cause the screw to move.

Hence we have a new electromagnetic definmition of a line of
magnetic induction. It is that line to which the force on the
conductor is always perpendicular.

It may also be defined as a line along which, if an electrie current
be transmitted, the conductor carrying it will experience no force.

501.] It must be carefully remembered, that the mechanical force
which urges a conductor carrying a current across the lines of
magnetic force, acts, not on the electric current, but on the con-
ductor which carries it. If the conductor be a rotating disk or a
fluid it will move in obedience to this force, and this motion may
or may not be accompanied with a change of position of the clectric
current which it carries. But if the current itself be free to choose
any path through a fixed solid conductor or a network of wires,
then, when a constant magnetic force is made to act on the system,
the path of the current through the conductors is not permanently
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altered, but after certain transient phenomena, called induction
currents, have subsided, the distribution of the current will be found
to be the same as if no magnetic force were in action.

The only force which acts on electric currents is electromotive
force, which must be distinguished from the mechanieal force which
is the subject of this chapter.

Fig. 25.

Relations between the positive directions of motion and of rotation indicated by
three right-handed screws.

VOL. II. L
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CHAPTER IL

AMPERE’S INVESTIGATION OF THE MUTUAL ACTION OF

ELECTRIC CURRENTS,

502.] WE have considered in the last chapter the nature of the
magnetic fleld produced by an electric current, and the mechanieal
action on a conductor carrying an electric current placed in a mag-
netic fleld. From this we went on to consider the action of one
electric circuit upon another, by determining the action on the first
due to the magnetic field produced by the second. But the action
of one circuit upon another was originally investigated in a direct
manner by Ampere almost immediately after the publication of
Orsted’s discovery. We shall therefore give an outline of Ampére’s
method, resuming the method of this treatise in the next chapter.

The ideas which guided Ampére belong to the system which
admits direct action at a distance, and we shall find that a remark-
able course of speculation and Investigation founded on these ideas
has been carried on by Gauss, Weber, J. Neumann, Riemann,
Betti, C. Neumann, Lorenz, and others, with very remarkable
results both in the discovery of new facts and in the formation of
a theory of electricity. See Arts. 846—866.

The ideas which I bave attempted to follow out are those of
action through a medium from one portion to the contiguous
portion. These ideas were much employed by Faraday, and the
development of them in a mathematical form, and the comparison of
the results with known facts, have been my aim in several published
papers. The comparison, from a philosophical point of view, of the
results of two methods so completely opposed in their first prin-
ciples must lead to valuable data for the study of the conditions
of scientific speculation.

503.7 Ampére’s theory of the mutual action of electric currents
is founded on four experimental facts and one assumption.
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Ampére’s fundamenial experiments are all of them examples of
what has been called the null method of comparing forces. Sec
Art, 214. TInstead of measuring the foree by the dynamical effect
of communicating motion to a body, or the statical method of
placing it in equilibrium with the weight of a body or the elasticity
of a fibre, in the null method two forces, due to the same source,
are made to act simultaneously on a body already in equilibrium,
and no effect is produced, which shews that these forces are them-
selves in equilibrium. This method is peculiarly valuable for
comparing the effects of the electric current when it passes through
circuits of different forms. By connecting all the conductors in
one continuous series, we ensure that the strength of the current
is the same at every point of its course, and since the current
begins everywhere throughout its course almost at the same instant,
we may prove that the forces due to its action on a suspended
body are in equilibrium by observing that the body is not at all
affected by the starting or the stopping of the current.

504.] Ampére’s balance consists of a light frame capable of
revolving about a vertical axis, and carrying a wire which forms
two circuits of equal area, in the same plane or in parallel planes,
in which the current flows in opposite direetions. The object of
this arrangement is to get rid of the effects of terrestrial magnetism
on the conducting wire. When an electric cirenit is free to move
it tends to place itself so as to embrace the largest possible number
of the lines of induction., If these lines are due to terrestrial
magnetism, this position, for a cireuit in a vertical plane, will be
when the plane of the circuit is east and west, and when the
direction of the current is opposed to the apparent course of the
sun.

By rigidly connecting two circuits of equal area in parallel planes,
in which equal currents run in opposite directions, a combination
is formed which is unaffected by terrestrial magnetism, and is
therefore called an Astatic Combination, see Fig. 26. Tt is acted
on, however, by forces arising from currents or magnets which are
so near it that they act differently on the two circuits.

505.] Ampére’s first experiment is on the effect of two equal
currents close together in opposite directions. A wire covered with
insulating material is doubled on itself, and placed near one of the
circuits of the astatic balance. When a current is made to pass
through the wire and the balance, the equilibrium of the balance
remains undisturbed, shewing that two equal currents close together

L2
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in opposite directions neutralize each other. If, instead of two
wires side by side, a wire be insulated in the middle of a metal

-—
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—

\Y:\
e
(67—’

-

Fig. 26.

tube, and if the current pass through the wire and back by the
tube, the action outside the tube is not only approximately but
accurately null. This principle is of great importance in the con-
struction of electric apparatus, as it affords the means of conveying
the current to and from any galvanometer or other instrument in
such a way that no electromagnetic effect is produced by the current
on its passage to and from the instrument. In practice it is gene-
rally sufficient to bind the wires together, care being taken that
they are kept perfectly insulated from each other, but where they
must pass near any sensitive part of the apparatus it is better to
make one of the conductors a tube and the other a wire inside it.
Sce Art. 683.

506.] In Ampere’s second experiment one of the wires is bent
and crooked with a number of small sinuosities, but so that in
every part of its course it remains very near the straight wire.
A current, flowing through the crooked wire and back again
through the straight wire, is found to be without influence on the
astatic balance. This proves that the effect of the current running
throngh any crooked part of the wire 1s equivalent to the same
current running in the straight line joining its extremities, pro-
vided the crooked line is in no part of its course far from the
straight one. Hence any small element of a circuit is equivalent
to two or more component elements, the relation between the
component elements and the resultant element being the same as
that between component and resultant displacements or velocities.

507.] In the third experiment a conductor capable of moving
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only in the direction of its length is substituted for the astatic
balance, the current enters the conductor and leaves it at fixed
points of space, and it is found that no closed circuit placed in
the neighbourhood 1s able to move the conductor.

5

Tig. 27.

The conductor in this experiment is a wire in the form of a
circular are suspended on a frame which is eapable of rotation
about a vertieal axis. The cireular are is horizontal, and its centre
coincides with the vertical axis. Two small troughs are filled with
mercury till the convex surface of the mercury rises above the
level of the troughs. The troughs are placed under the circular
arc and adjusted till the mercury touches the wire, which is of
copper well amalgamated. 'The current is made to enter one of
these troughs, to traverse the part of the circular arc between the
troughs, and to escape by the other trough. Thus part of the
circular arc is traversed by the current, and the arc is at the same
time capable of moving with considerable freedom in the direc-
tion of its length. Any closed currents or magnets may now be
made to approach the moveable conductor without producing the
slightest tendency to move it in the direction of its length.

508.] In the fourth experiment with the astatic balance two
circuits are employed, each similar to one of those in the balance,
but one of them, €, having dimensions n times greater, and the
other, 4, n times less. These are placed on opposite sides of the
circuit of the balance, which we shall call B, so that they are
similarly placed with respect to it, the distance of € from B being
# times greater than the distance of B from 4. The direction and
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strength of the current is the same in 4 and €. Its direetion in
B may be the same or opposite. Under these circumstances it is
found that £ is in equilibrium under the action of A and C, whatever
be the forms and distances of the three circuits, provided they have
the relations given above.

Since the actions between the complete circuits may be considered
to be due to actions between the elements of the circuits, we may
use the following method of determining the law of these actions.

Let 4,, B,, C,, Fig. 28, be corresponding elements of the three
circuits, and let 4,, B,, C, be also corresponding elements in an-
other part of the cirenits. Then the sitnation of B, with respect
to 4, is similar to the situation of C; with respect to B,, but the

N

]

|

distance and dimensions of C; and B, are # times the distance and
dimensions of B, and A4,, respectively. If the law of electromag-
netic action is a function of the distance, then the action, what-
ever be its form or quality, between B, and 4,, may be written
F =B .4,/ (B dy)ab,
and that between C) and B,
F'= C,.B,f(C By be,
where @, 4, ¢ are the strengths of the cuirents in 4, B, C. DBut
nB, = C, nd,=B,, nB, d, = C, B, and @ =¢c. Hence
F = u?B,. A, f(nB, 4,)ab,
and this is equal to # by experiment, so that we have
n?f(ndy By) = f (4, B) 5
OT, the force varies inversely as the square of the disfance.
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509.] It may be observed with reference to these experiments
that every electric current forms a closed circuit. The currents
used by Ampére, being produced by the voltaic battery, were of
course in closed circuits. It might be supposed that in the case
of the current of discharge of a condnctor by a spark we might
have a current forming an open finite line, but according to the
views of this book even this case is that of a closed circuit. No
experiments on the mutual action of unclosed currents have been
made. Hence no statement about the mutual action of two ele-
ments of circuits can be sald to rest on purely experimental grounds.
It is true we may render a portion of a ecircuit moveable, so as to
ascertain the action of the other currents upon it, but these cur-
rents, together with that in the moveable portion, necessarily form
closed circuits, so that the ultimate result of the experiment is the
action of one or more closed currents upon the whole or a part of a
closed current.

510.] In the analysis of the phenomena, however, we may re-
gard the action of a closed circuit on an element of itself or of
another cireuit as the resultant of a number of separate forces,
depending on the separate parts into which the first circuit may
be conceived, for mathermatical purposes, to be divided.

This is a merely mathematical analysis of the action, and is
therefore perfectly legitimate, whether these forces can really act
separately or not.

511.] We shall begin by considering the purely geometrical
relations between two lines in space representing the circuits, and
between elementary portions of these lines.

Let there be two curves in space in each of which a fixed point
is taken from which the ares are
measured in a defined direction
along the curve. Let 4, 4" be
these points. Let P @ and P Q'
be elements of the two curves.

Let 4P=s, A'F=¢, } (1)

PQ=ds, PQ=ds,
and let the distance PP be de- Fig. 29.
noted by r.” Let the angle P’ PQ be denoted by 6, and PP'Q’
by &, and let the angle between the planes of these angles be
denoted by 5.

"The relative position of the two elements is sufficiently defined by
their distance # and the three angles 6, 6, and », for if these be
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given their relative position is as completely determined as if they
formed part of the same rigid body.

512 If we use rectangular coordinates and make #, 7, 2z the
coordinates of P, and ', ', # those of #”, and if we denote hy Z, m,
n and by #’, m’, n’ the direction-cosines of P @, and of P @’ re-
spectively, then

dz dy dz
d—s':Z’ 2]?=m’ ds =™ ]
G Y ©
das’ oods ds’
and L@ —z)+m (Y —y)+n(f—2) = rcosh,
U@ —x)+m' (¥ —y)+ 7' (4 —2) =—rcos6',§ (3)
[ +mm +nn’ = cose,

where ¢ is the angle between the directions of the elements them-
selves, and

cos € = —cos 0 cos 8" +sin 0 sin 0" cos 7. (4)
Again rt= (@ =2+ (7" —9) + ( —2)% (8)
dr , dx , dz
whenee T = m—x) —(3/ y);zg—( _Z)EE, 1
= —7rcos . 6)
. dr , da’ , dy a7
Similarly Ty = (& —x) ds + {7 —2) a0 T (& —=z) 7’ [
=—rcosf; J

and differentiating 7 ar with respect to «,

ds

d?r drdr _  dedd dydy dedd
Tdsad Vdsds T T dsdd T dsdd  ds 45’
=— (U +mm +nn')

= — COS €,

(7)

We can therefore express the three angles 6, 6, and 5, and the
auxiliary angle e in terms of the differential coefficients of # with
respect to 8 and ¢ as follows,

0050_—£, 1
ds ‘
cosO’:-—dr,,
ds 8
cos € — a%r dr dr (8)
c==7 dsdd ~ ds ds
. . d2r
sin 8 sin 6 cosn = —r dsde”
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513.] We shall next consider in what way it is mathematically
concelvable that the elements P @ and 7’ might act on each
other, and in doing so we shall not at first assume that their mutual
‘action is necessarily in the line joining them.

‘We have seen that we may suppose each element resolved into
other elements, provided that these components, when combined
according to the rule of addition of vectors, produce the original
element as their resultant.

‘We shall therefore consider ds as resolved into cos 8 ds = ain the
direction of 7, and sin 8ds = 3 p g .
in a direetion perpendicular to '\/q dwy
7 in the plane P PGQ. P arg

We shall also consider ds
as resolved Into cos 0’ ds’ = o’ in the direction of # reversed,
sin 8" cos n ds"= B In a direction paralle! to that in which 8 was
measured, and sin ¢ sinnds’= 9" in a direction perpendicular to
o’ and 3.

Let us consider the action between the components a and 8 on
the one hand, and o/, 3, ¥* on the other.

(1) @ and o are in the same straight line. The force between
them must therefore be in this line. We shall suppose it to be
an attraction = Aaa ¢,

Fig. 30.

where 4 is a function of 7, and 4, 4" are the intensities of the
currents in s and s respectively. This expression satisfies the
condition of changing sign with ¢ and with ",

(2) B and 3 are parallel to each other and perpendicular to the
line joining them, The action between them may be written

BB .

This force 1s evidently in the line joining 8 and #, for it must
be in the plane in which they both lie, and if we were to measure
B and B in the reversed dircction, the value of this expression
would remain the same, which shews that, if it represents a force,
that force has no component in the direction of 8, and must there-
fore be directed along r. Let us assume that this expression, when
positive, represents an attraction.

(3) B and ¥ are perpendicular to each other and to the line
joining them. The only action possible between clements so related
is a couple whose axis is parallel to . We are at present engaged
with forees, so we shall leave this ont of account.

(4) The action of a and g, if they act on each other, must be
expressed by Caplit.
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The sign of this expression is reversed if we reverse the direction
in which we measure 8. 1t must therefore represent either a force
in the direction of 8°, or a couple in the plane of a and 3. As we
are not investigating couples, we shall take it as a force acting
on a in the direction of g'.

There is of course an equal force acting on B’ in the opposite
direction.

We have for the same reason a force

Cavy it

acting on a in the direction of 3", and a force
CBa it

acting on A in the opposite direction.

514.] Collecting our results, we find that the action on ds is
compounded of the following forces,

X = (4ad’+ BB in the direction of 7,
Y= C(aff—0a'B)ii" in the direction of 3, E
and Z = Cay 74 in the direction of y.

(9)

Let us suppose that this action on ds 1s the resultant of three
forees, Rii’ds ds” acting in the direction of r, S4i’dsdy acting in
the direction of ds, and 8"¢i’dsds acting in the direction of 4&,
then in terms of 6, ¢, and 7,

E= Acos0c0s6’+Bsin0sin6’eosn,} Lo
8§=—Ccost, ‘= C cosf. (10)
In terms of the differential coefficients of »
dr dr d%r
k= AZZ;TS’_— " dsds’ (11)
dr , dr
S.—_—}-C%’ S——OQE:

In terms of {, m, #, and ', m’, @/,
1 s ' ’ ’ ’
R = —(d+B)y ((tmy 1 n) (U4 mn+0¢)+ BA 4 mn' +01),

1 ’ ’ ’ 1

where £, 1, ( are written for 2" —z, ¥"—yz, and 2’ — 2 respectively.
515.] We have next to calculate the force with which the finite
current s acts on the finite current s. The current ¢ extends from
A, where s = 0, to P, where it has the value s. The current &
extends from A”, where s’= 0, to #, where it has the value ¢
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The coordinates of points on either current are functions of ¢ or
of ¢.

If F is any function of the position of a point, then we shall use
the subsecript (, ;) lo denote {he excess of its value at P over that
at A, thus By = Fp—F4.

Such functions necessarily disappear when the circuit is closed.

Let the components of the total force with which 4”7 acts on

AdAbe i’ X, 1i’Y, and 2¢°Z. Then the component parallel to X of

2y
the force with which ds" acts on ds will be i’ d—— ds ds’.

d 7
2
Hence d X, _R£+Sl-+ N (13)
ds ds
Substituting the values of &, §, and 8 from (12), remembering
that Zf+mn+nc_r;”,, (19)
and arranging the terms with respect to ¢, m, #, we find
d2X 1 dr 13
Rl iy BN
d&dé"—Z{ (11+B) zdlf (B'*'C) %
1 d
+m<{—(A+B) — dr,fn+0—~ + BLE E}
1 d & n
n{—i B Tecre S L BTEL (15)

Since 4, I8, and C are functions of », we may write

P:/Q(A+B)%2dr, Q.—:/mCdr, _ (16)

the integration being taken between 7 and oo because 4, B, C
vanish when » = oo.

Hence (A+Jj’)7l2~ -

dp g
p and C’_——d—r—-

516.] Now we know, by Ampere’s third case of equilibrium, that
when §" 1s a closed circuit, the force acting on ds is perpendicular
to the direction of ds, or, in other words, the component of the force
in the dircetion of ds itself 1s zero. Let us therefore assume the
direction of the axis of # so as to be parallel to ds by making /=1,
m = 0, % = 0. Equation (15) then becomes

@#X 4P aQ
_ &L s
dsds ~— ds &— s’ +(B+ C)

(17)

e, (18)

To find %X, the force on ds referred to unit of length, we must
ds
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integrate this expression with respect to ¢. Integrating the first
term by parts, we find

i —[o err—3—c) Eas.  (19)

o

‘When ¢ is a closed circuit this expression must be zero. The
first term will disappear of itself. The second term, however, will
not in general disappear in the case of a closed circuit unless the
quantity under the sign of integration is always zero. Hence, to
satisfy Ampére’s condition,

1
— 20
= 5-(B+0). (20)
517.] We can now eliminate P, and find the general value of
X
o, dX (B+C¢
ds ds —{ 2 ;(Z§+mn+n§‘)+Q}(‘{'o)
SB-Cw'E=1y ,, f"B—Cl’(—n’g ,
+m0—2———r—d8—n0—2———7—d8. (21)

When s is a closed circuit the first term of this expression
vanishes, and if we make

¢ [(B=Cmn=r
o 2

p
4 ”-B—CZ’C.—n’f ’
_ ["B=C 22
p=[ET0 T, (22)
y = ‘?il”ﬁ_l”ds’,
0 2 7
where the integration is extended round the closed circuit s, we
may write adx ,
Ts =my—np. ‘*
Similarly %Zz na —1y, (23)
3
dz ,
= {F—ma

The quantities o', 8, ¥ are sometimes called the determinants of
the circuit & referred to the point P. Their resultant is called by
Ampére the directrix of the electrodynamic action.

It is evident from the equation, that the force whose components

‘{%X; ZZ—,, and %? 1s perpendicular both to ds and to this
directrix, and is represented numerically by the area of the parallel-

ogram whose sides are ds and the directrix.

are
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In the language of quaternions, the resultant foree on ds is the
vector part of the product of the directrix multiplied by 4.

Since we already know that the directrix is the same thing as
the magnetic force due to a unit current in the circuit s, we shall
henceforth speak of the directrix as the magnetic force due to the
eircuit.

518.] We shall now complete the calculation of the components
of the forece acting between two finile currents, whether closed or
open,

Let p be a new function of #, such that

p= gfm (B-C)dr, (24)
then by (17) and (20) "
4+B=rL Q402 @+p) (25)

and equations (11) become

dp d?
R = —%cose+rm(Q+p); ]
L (26)
o__ 29 g=t2. |
-4’ ds
With these values of the component forces, equation (13) becomes
#X _ dp £ Q .4
Bds =y +£dsd’(Q+ A=+
_ dp  B(Q+p)k  ,dp . dp
= st Taar Tl a 37)
519.] Let

F:f"zpds, G=f’mpds, Z=[npas, (28)

0 4] V]

F’:f'z'pds', G'zf'm'pds', H'zf"n'pds'. (29)
1) ¢ 1]

These quantities have definite values for any given point of space.
‘When the circuits are closed, they eorrespond to the components of
the vector-potentials of the circuits.

Let L be a new function of 7, such that

¥/ —_—/; r(Q+p) dr, (30)
and let 2 be the double integral
s [r
M:ffpcosedsds’, (31)
o Yo
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which, when the circuits are closed, becomes their mutual potential,
then (27) may be written
azx d? {d M dlL
dsds ~ dsds Ude ~ de
520.] Integrating, with respect to s and &, between the given
limits, we find

+F’—F}. (32)

_4M _ d

T dr dr

A F p—F y—Fp+ Fy, (33)

where the subscripts of I indicate the distance, », of which the

quantity L is a function, and the subscripts of F and #” indicate
the points at which their values are to be taken.

The expressions for ¥ and Z may be written down from this.
Multiplying the three components by &z, dy, and dz respectively,
we obtain
de+ Ydy+ZdZ = -D11{~D(];PP’_LAPI_LAIP+]IA.A’)J

3 (Fde+Gdy+H'de) p_a,
—(Fdx+ Gdy+][d2)(pl_A)/, (34)
where D is the symbol of a complete differential.

Since Fdz + G dy + H dz is not in general a complete differential of
a function of z, ¥, 2, Xdz 4+ Y dy+ Z dz is not a complete differential
for currents either of which is not closed.

521.7 If, however, both currents are closed, the terms in Z, F,
G, H, F', G’, II” disappear, and

Xde4 Ydy+Zde = DM, (35)
where M is the mutual potential of two closed cirenits carrying unit
currents. The quantity 3/ expresses the work done by the electro-

(Lpp—Lap—Lap+Lyg),

magnetic forces on either conducting circuit when it is moved
parallel to itself from an infinite distance to its actual position. Any
alteration of its position, by which M is inereased, will be assisted by
the electromagnetic forces.

It may be shewn, as in Arts. 490, 596, that when the motion of
the circuit is not parallel to itself the forces acting on it are still
determined by the variation of M, the potential of the one circuit on
the other.

522.] The only experimental fact which we have made use of
in this investigation is the fact established by Ampére that the
action of a closed current on any portion of another current is
perpendicular to the direction of the latter. Every other part of
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the investigation depends on purely mathematical counsiderations
depending on the properties of lines in space. The reasoning there-
fore may be presented in a much more condensed and appropriate
form by the use of the ideas and language of the mathematical
method specially adapted to the expression of such geometrical
relations—the Quatermions of Hamilton.

This has been done by Professor 'l'ait in the Quarterly Matte-
matical Journal, 1866, and in his treatise on Quaternions, § 399, for
Ampere’s original investigation, and the student can easily adapt
the same method to the somewhat more general investigation given

here.
523.] Hitherto we have made no assumption with respect to the

quantities 4, B, C, except that they are functions of #, the distance
between the elements. We have next to ascertain the form of
these functions, and for this purpose we make use of Ampére’s
fourth case of equilibrium, Art. 508, in which it is shewn that if
all the linear dimensions and distances of a system of two circuits
be altered in the same proportion, the currents remaining the same,
the force between the two circuits will remain the same.

Now the foree between the circuits for unit currents is %[, and

since this'is independent of the dimensions of the system, it must
be a numerical quantity. Hence 3 itself, the coeflicient of the
mutual potential of the circuits, must be a quantity of the dimen-
sions of a line. Tt follows, from equation (31), that p must be the
reciprocal of a line, and therefore by (24), B— C must be the inverse
square of a line. But since B and C are both functions of », B—C
must be the inverse square of 7 or some numerical multiple of it.
524.] The multiple we adopt depends on our system of measure-
ment. If we adopt the electromagnetic system, so called because
it agrees with the system already established for magnetic measure-
ments, the value of M ought to coincide with that of the potential
of two magnetic shells of strength unity whose boundaries are the
two circuits respectively. The value of 3/ in that case is, by

Art, 423,
M:ff""“ ds ds’, (36)

7

the integration being performed round both circuits in the positive
direction. Adopting this as the numerical value of M, and com-
paring with (31), we find

2
= = —C=-, - 37
P= and B-C 2 (87)
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525.] We may now express the components of the force on ds
arising from the action of 4¢' in the most general form consistent
with experimental facts.

The force on ?s is compounded of an attraction

1 dr dr ABr oy s, aeqQ .., , ]
B = FAG _zrd—r—&sds’)” dsds Sy il ds ds
in the direction of #,
8§ =— “Q 12'ds d$’ in the direetion of ds, [ (38)

ds”

and &= fig 13’ds ds’ in the direction of ds’,

where @ =f Cdr, and since C is an unknown function of », W€
r

know only that @ is some function of 7.

526.] The quantity @ cannot be determined, without assump-
tions of some kind, from experiments in which the active current
forms a closed circuit. If we suppose with Ampére that the action
between the elements ds and 4s" is in the line joining them, then
8 and 8" must disappear, and @ must be constant, or zero. The
force is then reduced to an attraction whose value is

1 dr dr 2r\.. ,
R= 7 (nglls?_glr %)zz’dsds. (39)

Ampére, who made this investigation long before the magnetic
system of units had been established, uses a formula having a
numerical value balf of this, namely

1 1dr dr dr
= Gaaw

Here the strength of the current is measured in what is called
electrodynamic measure. If 7, ¢” are the strength of the ¢nrrents in
electromagnetic measure, and 7, 7 the same in electrodynamic mea-
sure, then it is plain that

i = 2if, or j= /2i. (41)

Hence the unit current adopted in electromagnetic measure is
greater than that adopted in electrodynamic measure in the ratio
of V2 to 1.

The only title of the electrodynamic unit to consideration is
that it was originally adopted by Ampére, the discoverer of the
law of action between currents. The continual recurrence of /2
in calculations founded on it is iInconvenient, and the electro-
magnetie system has the great advantage of colnciding numerically

)jj’ds das'. (40)
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with all our magnetic formulae. As it is difficult for the student
to bear in mind whether he is to multiply or to divide by /2, we
shall henceforth use only the electromagnetic system, as udopted by
‘Weber and most other writers.

Sinece the form and value of @ have no effect on any of the
experiments hitherto made, in which the active current at least
is always a closed one, we may, if we please, adopt any value of Q
which appears to us to simplify the formulae.

Thus Ampere assumes that the force between two clements 1s in
the line joining them. This gives @ = 0,

1 ,drdr
7 (Gear ™

Grassmann * assumes that two elements in the same straight line

have no mutual action. This gives '

1 3 d%r 1 dr , 1 dr
C==% P naw P ra YT wma Y
‘We might, if we pleased, assume that the attraction between two
elements at a given distance is proportional to the cosine of the

angle between them. In this case

E= Zrﬂ)iidsds’ §=0, &=0. (12)
ds ds” ’ ’

1 dr 1 dr
— = . 4
2 ds’ 8 72 ds (44)

Finally, we might assume that the attraction and the oblique
forces depend only on the angles which the elements make with the

line joining them, and then we should have

Q:—%, Re—_3 1 dr dr 2 dr , 2 dr

1 1
Q=—;, R:;z—cose, §=—

Aamde = wa Y=g 9

527.] Of these four different assumptions that of Ampere is
undoubtedly the best, since it is the only one which makes the
forces on the two elements not only equal and opposite but in the
straight line which joins them,

* Pogg., Ann. Ixiv. p. 1 (1845).

voL. 1I. M
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CHAPTER IIL
ON THE INDUCTION OF ELECTRIC CURRENTS.

528.] Tux discovery by Orsted of the magnetic action of an
electric current led by a direct process of reasoning to that of
magnetization by electric currents, and of the mechanical action
between electric currents. It was not, however, till 1831 that
Faraday, who had been for some time endeavouring to produce
electric currents by magnetic or electric action, discovered the con-
ditions of magneto-clectric induction. The method which Faraday
employed in his researches consisted in a constant appeal to ex-
periment as a means of testing the truth of his ideas, and a constant
cultivation of ideas under the direct influence of experiment. In
his published researches we find these ideas expressed in language
which is all the better fitted for a nascent science, because it is
somewhat alien from the style of physicists who have been accus-
tomed to established mathematical forms of thonght.

The experimental investigation by which Ampegre established the
laws of the mechanical action belween electric currents is one of
the most brilliant achievements in science.

The whole, theory and experiment, seems as if it had leaped,
full grown and full armed, from the brain of the ‘ Newton of elec-
tricity.” It is perfect in form, and unassailable in accuracy, and
it 1s summed up in a formula from which all the phenomena may
be deduced, and which must always remain the cardinal formula of
electro-dynamies.

The method of Ampére, however, though cast into an inductive
form, does not allow us to trace the formation of the ideas which
guided it. We can scarcely believe that Ampere really discovered
the law of action by means of the experiments which he describes.
We are led to suspect, what, indeed, he tells us himself *, that he

* Théarie des Phenoménes Electrodynamiques, p. 9.
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discovered the law by some process which he has not shewn us,
and that when he had afterwards built up a perfect demon-
stration be removed all traces of the scaffolding by which he had
raised it.

Faraday, on the other hand, shews us his unsuccessful as well
as his successful experiments, and his crude ideas as well as his
developed ones, and the reader, however inferior to him in inductive
power, feels sympathy even more than admiration, and is tempted
to believe that, if he had the opportunity, he too would be a dis-
coverer. Every student therefore should read Ampére’s research
as a splendid example of scientific style in the statement of a dis-
covery, but he should also study Favaday for the cultivation of a
scientific spirit, by means of the action and reaction which will
take place between newly discovered facts and nascent ideas in his
own mind.

It was perhaps for the advantage of science that Faraday, though
thoroughly conscious of the fundamental forms of space, time, and
force, was not a professed mathematician. Ile was not tempted
to enter into the many interesting researches in pure mathematics
which his discoveries would have suggested if they had been
exhibited in a mathematical form, and he did not feel called upon
either to force his results into a shape acceptable to the mathe-
matical taste of the time, or to express them in a form which
mathematicians might attack. He was thus left at leisure to
do his proper work, to coordinate his ideas with his facts, and to
express them in natural, untechnical language.

It is mainly with the hope of making these ideas the basis of a
mathematical method that T have undertaken this treatise.

529.7 We are accustomed to consider the universe as made up of
parts, and mathematicians usnally begin by considering a single par-
ticle, and then conceiving its relation to another particle, and so on.
This has generally been supposed the most natural method. To
conceive of a particle, however, requires a process of abstraction,
since all our perceptions are related to extended bodies, so that
the idea of the a// that is in our consciousness at a given instant
is perhaps as primitive an idea as that of any individual thing.
Hence there may be a mathematical method in which we proceed
from the whole to the parts instead of from the parts to the whole.
For example, Euclid, in his first book, conceives a line as traced
out by a point, a surface as swept out by a line, and a solid as
generated by a surface. But he also defines a surface as the

M2
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164 MAGNETO-ELECTRIC INDUCTION, [530.

boundary of a solid, a line as the edge of a surface, and a point
as the extremity of a line.

In like manner we may conceive the potential of a material
system as a function found by a certain process of integration with
respect to the masses of the bodles in the field, or we may suppose
these masses themselves to have no other mathematical meaning

. 1 . .
than the volume-integrals of s v2¥, where ¥ 1s the potential.
ki3

In electrical investigations we may use formulae in which the
quantities involved are the distances of certain bodies, and the
electrifications or currents in these bodies, or we may use formulae
which involve other quantities, each of which is continuous through
all space.

The mathematical process employed in the first method 1s in-
tegration along lines, over surfaces, and throughout finite spaces,
those employed in the second method are partial differential equa-
tions and integrations throughout all space.

The method of Faraday seems to be intimately related to the
second of these modes of treatment. He never considers bodies
as existing with nothing between them but their distance, and
acting on one another according to some function of that distance.
He conceives all space as a field of force, the lines of force being
in general curved, and those due to any body extending from it on
all sides, their directions being modified by the presence of other
bodies. He even speaks ¥ of the lines of foree belonging to a body
as in some sense part of ifself, so that in its action on distant
bodies it cannot be said to act where it is not. This, however,
is not a dominant idea with Faraday. I think he would rather
have said that the field of space 1s full of lines of force, whose
arrangement depends on that of the bodies in the field, and that
the mechanical and electrical action on each body is determined by
the lines which abut on it.

PHENOMENA OF MAGNETO-ELECTRIC INDUCTION *.

530.]1 1. Induction by Variation of the Primary Current.

Let there be two conducting circuits, the Primary and the
Secondary circuit. The primary circuit is connected with a voltaie

* Exp. Res., ii. p. 298 ; iii. p. 447.
+ Read Faraday’s Experimental Researches, series i and ii.

IRIS - LILLIAD - Université Lille 1



530.] ELEMENTARY PHENOMENA. 165

battery by which the primary current may be produced, maintained,
stopped, or reversed. The secondary ecircuit includes a galvano-
meter to indicate any currents which may be formed in it. This
galvanometer is placed at such a distance from all parts of the
primary circuit that the primary current has no sensible direct
influence on 1ts indications.

Let part of the primary circuit consist of a straight wire, and
part of the secondary circuit of a straight wire near, and parallel to
the first, the other parts of the circuits being at a greater distance
from each other.

It 1s found that at the instant of sending a current through
the straight wirc of the primary circuit the galvanomecter of the
secondary circnit indicates a current in the secondary straight wire
in the opposile direction. This 1s called the induced current. If
the primary current is maintained constant, the induced current soon
disappears, and the primary current appears to produce no effect
on the secondary circuit. If now the primary current is stopped,
a secondary current is observed, which is in the same direction as
the primary current. Every variation of the primary current
produces electromotive force in the secondary circuit. When the
primary current increases, the clectromotive force is in the opposite
direction to the eurrent. When it diminishes, the electromotive
force js in the same direction as the current. When the primary
current is constant, there is no electromotive force.

These effects of induction are increased by bringing the two wires
nearer together. They are also increased by forming them into
two circular or spiral coils placed close together, and still more by
placing an iron red or a bundle of iron wires inside the coils.

2. Induction by Motion of the Primary Circuit.

We have seen that when the primary current is maintained
constant and at rest the secondary current rapidly disappears.

Now let the primary current be maintained constant, but let the
primary straight wire be made to approach the secondary straight
wire. During the approach there will be a secondary current in
the opposite direction from the primary.

If the primary circuit be moved away from the secondary, there
will be a secondary current in the seme direction as the primary.

8. Induction by Motion of the Secondary Circuil.

If the secondary circuit be moved, the secondary current is
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opposite to the primary when the secondary wire is approaching
the primary wire, and in the same direction when it is receding
from it.

In all cases the direction of the secondary current is such that
the mechanical action between the two conductors is opposite to
the direction of motion, being a repulsion when the wires are ap-
proaching, and an aftraction when they are receding. This very
important fact was established by Lenz *.

4. Induction by the Relative Motion of a Magnet and the Secondary
Circuit.

If we substitute for the primary circuit a magnetic shell, whose
edge coincides with the circuit, whose strength is numerically equal
to that of the current in the circuit, and whose austral face cor-
responds to the positive face of the circuit, then the phenomena
produced by the relative motion of this shell and the secondary
circuit are the same as those observed in the case of the primary
circuit.

531.] The whole of these phenomena may be summed up in one
law. When the number of lines of magnetic induction which pass
through the secondary eircuit in the positive direction is altered,
an electromotive force acts round the circuit, which is measured
by the rate of decrease of the magnetic induction through the
cireuit,

532.] For instance, let the rails of a railway be insulated from
the earth, but connected at one terminus through a galvanometer,
and let the circuit be completed by the wheels and axle of a rail-
way carriage at a distance z from the terminus. Neglecting the
height of the axle above the level of the rails, the induction
through the secondary circuit is due to the vertical component of
the carth’s magnetic force, which in northern latitudes is directed
downwards. Hence, if & is the gauge of the rallway, the horizontal
area of the circuit i1s éz, and the surface-integral of the magnetic
induction through it is Zéx, where Z is the vertical component of
the magnetic force of the earth. Since Z is downwards, the lower
face of the circuit is to be reckoned positive, and the positive
direction of the circuit itself is morth, east, south, west, that is, in
the direction of the sun’s apparent diurnal course.

Now let the carriage be set in motion, then 2 will vary, and

* Pogg., Aun. xxi. 483 (1834.)
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there will be an electromotive force in the circuit whose value
dx
i
If # is increasing, that is, if the carriage is moving away from

18 —Zb

the terminus, this electromotive force is in the negative direction,
or north, west, south, east. Ilence the direction of this force
through the axle is from right to left. If z were diminishing, the
absolute direction of the force would be reversed, Lut since the
direction of the motion of the carriage is also reversed, the electro-
motive force on the axle is still from right to left, the observer
in the carriage being always supposed to move face forwards. In
southern latitudes, where the south end of the needle dips, the
electromotive force on a moving body is from left to right.

Ilence we have the following rule for determining the electro-
motive force on a wire moving through a field of magnetic force.
Place, in imagination, your head and feet in the position occupied
by the ends of a compass needle which point north and south respec-
tively ;5 turn your face in the forward direetion of motion, then the
electromotive force due to the motion will be from left to right.

533.7 As these directional relations are important, let us take
another illustration. Suppose a metal girdle laid round the earth
at the equator, and a metal wire
laid along the meridian of Green-
wich from the equator to the north
pole.

Let a great quadrantal arch of
metal be constructed, of which one
extremity i1s pivoted on the north
pole, while the other is carried round
the equator, sliding on the great
girdle of the earth, and following
the sun in his daily course. There
will then be an electromotive force
along the moving quadrant, acting
from the pole towards the equator. Fig. 3L

The electromotive force will be the same whether we suppose
the earth at rest and the quadrant moved from east to west, or

whether we suppose the quadrant at rest and the earth turned from
west to east. If we suppose the earth to rotate, the electromotive
forece will be the same whatever be the form of the part of the
circuit fixed in space of which one end touches one of the poles
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and the other the equator. The current in this part of the circuit
is from the pole to the equator.

The other part of the circuit, which is fixed with respect to the
earth, may also be of any form, and either within or without the
earth. In this part the current is from the equator to either pole.

534.7 The intensity of the electromotive force of magneto-electrie
induction is entirely independent of the nature of the substance
of the conductor in which it acts, and also of the nature of the
conductor which carries the inducing current.

To shew this, Faraday * made a conductor of two wires of different
metals insulated from one another by a silk covering, but twisted
together, and soldered together at one end. The other ends of the
wires were connected with a galvanometer. In this way the wires
were similarly situated with respect to the primary circuit, but if
the electromotive force were stronger in the one wire thun in the
other it would produce a current which would be indicated by the
galvanometer. He found, however, that such a combination may
be exposed to the most powerful electromotive forces due to in-
duction without the galvanometer being affected. He also found
that whether the two branches of the compound conductor consisted
of two metals, or of a metal and an electrolyte, the galvanometer
was not affected .

Hence the electromotive force on any conductor depends only on
the form and the motion of that conduetor, together with the
strength, form, and motion of the eleetric eurrents in the ficld.

535.] Another negative property of electromotive force is that
it has of itself no tendency to cause the mechanical motion of any
body, but only to cause a current of electricity within it.

If it actually produces a current in the body, there will be
mechanical action due to that current, but if we prevent the
current from being formed, there will be no mechanical action on
the body itself. If the body is electrified, however, the electro-
motive foree will move the body, as we have described in Electro-
staties.

536.] The experimental investigation of the laws of the induction
of electric currents in fixed ecirenits may be conducted with
considerable accuracy by methods in which the electromotive force,
and therefore the current, in the galvanometer circuit is rendered
Zero.

For instance, if we wish to shew that the induction of the coil

* Exp. Res., 195. + Ib., 200.
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4 on the coil X is equal to that of B upon ¥, we place the first
pair of coils 4 and X at a sufficient distance from the second pair

B and Y. We then connect 4 and B with a voltaic battery, so
that we can make the same primary current flow through 4 in the
positive direction and then through B in the negative direction.
We also connect X and ¥ with a galvanometer, so that the secondary
current, if 1t exists, shall flow in the same direetion through X and
Y in series.

Then, if the induction of 4 on X is equal to that of B on ¥,
the galvanometer will indicate no induction current when the
battery circuit is closed or broken.

The accuracy of this method increases with the strength of the
primary current and the sensitiveness of the galvanometer to in-
stantaneous currents, and the experiments arec much more easily
performed than those relating to electromagnetic attractions, where
the conductor itself has to be delicately suspended.

A very instructive series of well devised experiments of this kind
1s described by Professor Felici of Pisa *.

I shall only indicate briefly some of the Jaws which may be proved
in this way.

(1) The electromotive force of the induction of ome circuit on
another is independent of the area of the section of the conductors
and of the material of which they are made.

For we can exchange any one of the circnits in the experiment
for another of a different section and material, but of the same form,
without altering the result.

* Annales de Chimie, xxxiv. p. 66 (1852), and Nuoso Cimento, ix. p. 345 (1859).
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(2) The induction of the circuit 4 on the circuit X is equal to
that of X upon 4.

For if we put 4 in the galvanometer circuit, and X in the battery
circuil, the equilibrium of electromotive foree 1s not disturbed.

(3) The induetion is proportional to the inducing current.

For if we have ascertained that the induction of 4 on X is equal
to that of B on ¥, and also to that of € on Z, we may make the
battery current first flow through 4, and then divide itself in any
proportion between B and C. Then if we connect X reversed, ¥
and Z direct, all in series, with the galvanometer, the electromotive
force in X will balance the sum of the electromotive forces in ¥
aud Z.

(4) In pairs of circuits forming systems geometrically similar
the induction is proportional to their linear dimensions.

For if the three pairs of circuits above mentioned are all similar,
but if the linear dimension of the first pair is the sum of the
corresponding linear dimensions of the second and third pairs, then,
if 4, B, and C are connected in series with the battery, and X
reversed, ¥ and Z also in series with the galvanometer, there will
be equilibrium.

(5) The electromotive force produced in a coil of #» windings by
a current in a coil of m windings is proportional to the product mux.

537.] For experiments of the kind we have been considering the
galvanometer should be as sensitive as possible, and its needle as
light as possible, so as to give a sensible indication of a very
small transicnt current. The experiments on induction due to
motion require the needle to have a somewhat longer period of
vibration, so that there may be time to effect certain motions
of the condnctors while the needle is not far from its position
of equilibrium. In the former experiments, the electromotive
forces in the galvanometer circuit were in equilibrium during
the whole time, so that no current passed through the galvano-
meter coll,  In those now to be described, the clectromotive forces
act first in one direction and then in the other, so as to produce
in succession two currents in opposite directions through the gal-
vanometer, and we have to shew that the impulses on the galvano-
meter needle due to these successive currents are in certain cases
equal and opposite.

The theory of the application of the galvanometer to the
measurement of transient currents will be considered more at length
in Art. 748. At present it is suflicient for our purpose to ob-
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serve that as long as the galvanometer needle is near its position
of equilibrium the deflecting furce of the current is proportional
{o the current itself, and if the whole time of action of the current
is smull eompared with the period of vibration of the needle, the
final velocity of the magnet will be proportional to the total
quantity of electricity in the current. Hence, if two currents pass
In rapid succession, conveying equal quantities of electricity in
opposite dircctions, the necedle will be left without any final
velocity.

Thus, to shew that the induction-currents in the secondary circuit,
due to the closing and the breaking of the primary circuit, are
equal in total quantity but opposile in direction, we may arrange
the primary circuit in connexion with the battery, so that by
touching a key the current may be sent through the primary circuit,
or by removing the finger the contact may be broken at pleasure.
If the key is pressed down for some time, the galvanometer in
the secondary circuit indicates, at the time of making contact, a
transient current in the opposite direction to the primary current.
If contact be maintained, the induction current simply passes and
disappears. If we now break contact, another transient current
passes in the opposite direction through the secondary eircuit,
and the galvanometer meedle receives an impulse in the opposite
direction.

But if we make contact only for an instant, and then break
contact, the two induced currents pass through the galvanometer
in such rapid succession that the needle, when acted on by the first
current, has not time to move a sensible distance from its position
of equilibrinm before it is stopped by the second, and, on account
of the exact equality between the quantities of these transient
currents, the needle 1s stopped dead.

If the needle is watched carefully, it appears to be jerked suddenly
from one position of rest to another position of rest very necar
the first.

In this way we prove that the quantity of electricity in the
induction current, when contact is broken, is exactly equal and
opposite to that in the induction current when contact is made.

538.] Another application of this method 1s the following, which
is given by Feliel in the second series of his Rescarches.

It is always possible to find many different positions of the
secondary coil 5, such that the making or the breaking of contact
in the primary coil 4 produces no induction current in /5. The
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positions of the two coils are in such cases said to be conjugate to
each other.

Let B, and B, be two of these positions. If the coil B be sud-
denly moved from the position B; to the position B,, the algebraical
sum of the transient currents in the coill B is exactly zero, so
that the galvanometer needle is left, at rest when the motion of B is
completed.

This 1s true in whatever way the coil B is moved from B, to £,,
and also whether the current in the primary coil 4 be continued
constant, or made to vary during the motion.

Again, let B’ be any other position of B not conjugate to 4,
go that the making or breaking of contact in 4 produces an in-
duction eurrent when B is in the position 7.

Let the contact be made when B is in the conjugate position By,
there will be no induetion current. Move B to B, there will be
an induction current due to the motion, but if & is moved rapidly
to B, and the primary contact then broken, the induction current
due to breaking contact will exactly annul the effect of that due to
the motion, so that the galvanometer necedle will be left at rest.
Hence the current due to the motion from a conjugate position
to any other position is equal and opposite to the current due to
breaking contact in the latter position.

Since the effect of making contact is equal and opposite to that
of breaking it, it follows that the cffect of making contact when the
coil B is in any position B’ is equal to that of bringing the coil
from any conjugate position Z; to 5" while the current is flowing
through 4.

If the change of the relative position of the coils is made by
moving the primary circuit instead of the secondary, the result is
found to be the same.

539.] It follows from these experiments that the total induction
current in B during the simultaneous motion of 4 from 4, to 4,, and
of B from B, to B,, while the current in 4 changes from y, to y,,
depends only on the initial state 4,, B, y,, and the final state
4,, B,, y,, and not at all on the nature of the intermediate states
through which the system may pass.

Hence the value of the total induction current must be of the
form F(dy, By, yo)— F(4ys Bis 1)
where # is a function of 4, B, and .

‘With respect to the form of this function, we know, by Art. 536,
that when there is no motion, and therefore 4, = A, and B = B,
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the induction current is proportional to the primary ecurrent.
Hence y enters simply as a factor, the other factor being a fune-
tion of the form and position of the circuits 4 and B.

We ualso know that the value of this function depends on the
relative and not on the absolute positions of 4 aud B, so that
it must be capable of being expressed as a funcefion of the distances
of the different elements of which the circuits are composed, and
of the angles which these elements make with each other.

Let M be this function, then the total induction current may be

written C{M,v,—Myy,},

where C is the conductivity of the secondary circuit, and My,
are the original, and #,, y, the final values of # and y.

These experiments, therefore, shew that the total current of
induction depends on the change which takes place in a certain
quantity, My, and that this change may arise either from variation
of the primary current y, or from any motion of the primary or
secondary circuit which alters M.

540.] The conception of such a quantity, on the changes of which,
and not on its absolute magnitude, the induction current depends,
occurred to Faraday at an early stage of his researches *. Ile
observed that the secondary circuit, when at rest in an electro-
magnetic fleld which remains of constant intensity, does not shew
any electrical effect, whereas, if the same state of the field had been
suddenly produced, there would have been a current. Again, if the
primary ecircuit is removed from the field, or the magnetic forces
abolished, there is a current of the opposite kind., He therefore
recognised In the secondary circuit, when in the electromagnetic
field, a ‘peculiar electrical condition of matter,” to which he gave
the name of the Electrotonic State. He afterwards found that he
could dispense with this idea by means of considerations founded on
the lines of maguetic forcet, but even in his latest researches i,
he says, “Again and again the idea of an elecirofonic state § has
been foreed upon my mind.’

The whole history of this idea in the mind of Faraday, as shewn
in his published researches, is well worthy of study. By a course
of experiments, guided by intense application of thought, but
without the aid of mathematical calculations, he was led to recog-
nise the existence of something which we now know to be a mathe-
matical quantity, and which may even be called the fundamental

* Exp. Res., series i. 60. 1 Ib., 3269,
+ Ib., series ii. (242). § Ib., 60, 1114, 1661, 1729, 1733,
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quantity in the theory of electromagnetism. But as he was led
up to this conception by a purely experimental path, he aseribed
to it a physical existence, and supposed it to be a peculiar con-
dition of matter, though he was ready to abandon this theory as
soon as he could explain the phenomena by any more familiar forms
of thought.

Other investigators were long afterwards led up to the same
idea by a purely mathematical path, but, so far as I know, none
of them recognised, in the refined mathematical 1dea of the potential
of two circuits, Faraday’s bold hypothesis of an clectrotonic state.
Those, therefore, who have approached this subject in the way
pointed out by those eminent investigators who first reduced its
laws to a mathematical form, have sometimes found 1t difficult
to appreciate the scientific accuracy of the statements of laws which
Faraday, in the first two series of his Researcies, has given with
such wonderful completeness.

The scientific value of Faraday’s conception of an electrotonic
state consists In its directing the mind to lay hold of a certain
quantity, on the changes of which the actual phenomena depend.
Without a much greater degree of development than Faraday gave
it, this conception does not easily lend itself to the explanation of the
phenomena. We shall return to this subject again in Art. 584.

541.] A method which, in Faraday’s hands, was far more powerful
is that in which he makes use of those lines of magnetic force
which were always in his mind’s eye when contemplating his
magnets or electric currents, and the delineation of which by
means of iron filings he rightly regarded * as a most valuable aid
to the experimentalist.

Faraday looked on these lines as expressing, not only by their
direction that of the magnetic force, but by their number and
concentration the intensity of that force, and in his later re-
searches + he shews how to conceive of unit lines of force. I have
explained in various parts of this treatise the relation between the
properties which Faraday recognised in the lines of force and the
mathematical conditions of electric and magnetic forces, and how
Faraday’s notion of unit lines and of the number of lines within
certain limits may be made mathematically precise. See Arts. 82,
404, 190.

In the first series of his flesearches { he shews clearly how the
direction of the current in a conducting circuit, part of which is

* Exp. Res., 3234, + Tb., 3122, + Tb, 114.
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moveable, depends on the mode in which the moving part cuts
through the lines of magnetic force.

In the second series® he shews how the phenomena produced
by variation of the strength of a current or a magnet may be
explained, by supposing the system of lines of force to expand from
or contract towards the wire or magnet as its power rises or falls.

I am not certain with what degree of clearness he then held the
doctrine afterwards so distinetly laid down by him t, that the
moving conductor, as it cuts the lines of force, sums up the action
due to an area or section of the lines of force. This, however,
appears no new view of the case after the investigations of the
second series I have been taken into account.

The eonception which Faraday had of the continuity of the lines
of force precludes the possibility of their suddenly starting into
existence in a place where there were none before. 1f, therefore,
the number of lines which pass through a conducting circuit is
made to vary, it can only be by the eircuit moving across the lines
of force, or else by the lines of force moving across the circuit.
In either case a current is generated in the eircuit.

The number of the lines of force which at any instant pass throngh
the eircuit is mathematically equivalent to Faraday’s earlier con-
ception of the electrotonic state of that circuit, and it is represented
by the quantity M y.

It is only since the definitions of electromotive force, Arts. 69,
274, and its measurement have been made more precise, that we
can enunciate completely the true law of magneto-electric induction
in the following terms : —

The total electromotive force acting round a circuit at any
instant 1s measured by the rate of decrease of the number of lines
of magnetic force which pass through it.

When integrated with respect to the time this statement be-
comes :—

The time-integral of the total electromotive force acting round
any circuit, together with the number of lines of magmetic force
which pass through the circuit, is a constant quantity.

Instead of speaking of the number of lines of magnetie force, we
may speak of the magnetic induetion through the eircuit, or the
surface-integral of magnetic induction extended over any surface
bounded by the cireuit.

* Exp. Res., 238. + 1b., 2082, 3087, 3113,
* Tb., 217, &ec.
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We shall return again to this method of ¥araday. In the mean
time we must enumerate the theories of induction which are
founded on other considerations.

Lenz’s Law.

542.] In 1834, Lenz* enunciated the following remarkable
relation between the phenomena of the mechanieal action of clectric
currents, as defined by Ampére’s formula, and the induction of
electric currents by the rclative motion of conductors. An carlier
attempt at a statement of such a relation was given by Ritchie in
the Philosophical Magazine for January of the same year, but the
direction of the induced current was in every case stated wrongly,
Lenz’s law is as follows.—

If & constant current flows in the primary circuit 4, and if, by the
motion of A, or of the secondary circuit B, a current is induced in B, the
direction of this induced current will be such that, by its electromagnetic
action on A, it lends to oppose the relative motion of the circuils.

On this law J. Neumann+ founded his mathematical theory of
induction, in which he established the mathematical laws of the
induced currents due to the motion of the primary or secondary
conductor. He shewed that the quantity M, which we have called
the potential of the one circuit on the other, is the same as the
electromagnetic potential of the one circuit on the other, which
we have already investigated in connexion with Ampére’s formula.
We may regard J. Neumann, therefore, as having completed for
the induction of currents the mathematical treatment which Ampgre
had applied to their mechanical action.

543.1 A step of still greater scientific importance was soon after
made by Helmholtz in his Zssay on the Conservation of Force ], and
by Sir W. Thomson §, working somewhat later, but independently
of Helmboltz. They shewed that the induction of electric currents
discovered by Faraday could be mathematically deduced from the
clectromagnetic actions discovered by Orsted and Ampere by the
application of the prineiple of the Conservation of Energy.

Helmholtz takes the case of a conducting circuit of resistance £,
in which an electromotive force 4, arising from a voltaic or thermo-

* Pogg., Ann. xxxi. 483 (1834).

+ Berlin Acad., 1845 and 1847.

1 Read before the Physical Society of Berlin, July 23, 1847. Translated in
Taylor's * Scientific Memoirs,” part ii. p. 114.

§ Trans. Brit. Ass, 1848, and Phil. Mag., Dec. 1851, See also his paper on
¢ Trausient Electric Currents,” Phil. Mag., 1853.
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electric arrangement, acts. The current in the ecircuit at any
instant is 7. He supposes that a magnet is in motion in the
neighbourhood of the circuit, and that its potential with respect to
the conductor is 7, so that, during any small interval of time 47, the
energy communicated to the magnet by the electromagnetic action

-
18 7 a da.

The work done in generating heat in the circuit is, by Joule’s
law, Art.242, I2Rdf, and the work spent by the electromotive
force 4, in maintaining the current I during the time d?, is 4 1 d¢.
Hence, since the total work done must be equal to the work spent,

Aldt = IZRdt+I%dt,

whence we find the intensity of the current

ar
dl
I = % -
Now the value of 4 may be what we please. Let, therefore,
4 = 0, and then 1 47
=~mu
or, there will be a current due to the motion of the magnet, equal
arv

to that due to an electromotive force — "

The whole induced current during the motion of the magnet
from a place where its potential is 7] to a place where its potential
Is 7, 1s 1 [dV 1

fIdt:——]? —(Z[dt:f(
and therefore the total current is independent of the velocity or
the path of the magnet, and depends only on its initial and final
positions.

In Helmholtz’s original investigation he adopted a system of
units founded on the measurement of the heat generated in the

Vl—yz):

conductor by the current. Considering the unit of current as
arbitrary, the unit of resistance is that of a conductor in which this
unit current generates unit of heat in unit of time. The unit of
electromotive force in this system is that required to produce the
unit of current in the conductor of unit resistance. The adoption
of this system of units necessitates the introduction into the equa-
tions of a quantity z, which is the mechanical equivalent of the
unit of heat. As we invariably adopt either the electrostatic or
VOL. IL. N
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the electromagnetic system of units, this factor does not oceur in
the equations here given.

544.] Helmholtz also deduces the current of induction when a
conducting circuit and a circuit carrying a constant current are
made to move relatively to one another.

Let R, R, be the resistances, I, I, the currents, 4,, 4, the
external electromotive forces, and 7 the potential of the one circuit
on the other due to unit current in each, then we have, as before,

AL +4, 1, =R+ 1R, + 1,1, ajjj

If we suppose , to be the primary current, and J, so much less

than 7, that it does not by its induction produce any sensible

alteration in 7, so that we may put 7, = 4 then

B’

av

42_11%
i,

a result which may be interpreted exactly as in the case of the

I, =

H

magnet.

If we suppose I, to be the primary current, and 7, to be very

much smaller than 7,, we get for 7,
4-1%7
—

This shews that for equal currents the electromotive force of the
first eircuit on the second is equal to that of the second on the first,
whatever be the forms of the circuits.

Ielmholtz does not in this memoir discuss the case of induction
due to the strengthening or weakening of the primary current, or
the induction of a current on itself. Thomson * applied the same
principle to the determination of the mechanical value of a current,
and pointed out that when work is done by the mutnal action of
two constant currents, their mechanical value is increased by the
same amount, so that the battery has to supply double that amount
of work, in addition to that required to maintain the currents
agrainst the resistance of the circuits t.

545.]7 The introduction, by W, Weber, of a system of absolute

I =

* Mechanical Theory of Electrolysis, Pkil. Mag., Dec., 1851.
+ Nichol's Cyclopaedia of Physical Science, ed. 1860, Article “ Magnetism, Dy-
namical Relations of,” and Reprint, § 571.
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units for the measurement of electrical quantities is one of the most
important steps in the progress of the science. Having already, in
conjunction with Gauss, placed the measurement of magnetic quan-
tities in the first rank of methods of precision, Weber proceeded
in his Electrodynamic Measurements not only to lay down scund
principles for fixing the units to be employed, but to make de-
terminations of particular electrical quantities in terms of these
units, with a degree of accuracy previously unattempted. Both the
electromagnetic and the electrostatic systems of units owe their
development and practical application to these researches.

Weber has also formed a general theory of electric action from
which he deduces both electrostatic and electromagnetic force, and
also the induction of electric currents. We shall consider this
theory, with some of its more recent developments, in a separate
chapter. See Art. 846.
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CHAPTER 1V.

ON THE INDUCTION OF A CURRENT ON ITSELF.

546.] Farapay has devoted the ninth series of his Researches to
the investigation of a class of phenomena exhibited by the current
in a wire which forms the coil of an electromagnet.

Mr. Jenkin had observed that, although it is impossible to pro-
duce a sensible shock by the direct action of a voltaic system
consisting of only one pair of plates, yet, if the current is made
to pass through the coil of an electromagnet, and if contact is
then broken between the extremities of two wires held one in each
hand, a smart shock will be felt, No such shock is felt on making
contact.

Faraday shewed that this and other phenomena, which he de-
scribes, are due to the same inductive action which he had already
observed the current to exert on neighbouring conductors. In this
case, however, the inductive action is exerted on the same conductor
which carries the current, and it is so much the more powerful
as the wire itself is nearer to the different elements of the current
than any other wire can be.

547.] He observes, however ¥, that ¢the first thought that arises
in the mind is that the electricity circulates with something like
momentum or inertia in the wire.” Indeed, when we consider one
particular wire only, the phenomena are exactly analogous to those
of a pipe full of water flowing in a continued stream. If while
the stream is flowing we suddenly close the end of the tube, the
momentum of the water produces a sudden pressure, which is much
greater than that due to the head of water, and may be sufficient
to burst the pipe.

If the water has the means of escaping through a narrow jet

* Exp. Res., 1077-
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when the principal aperture is closed, it will be projected with a
velocity much greater than that due to the head of water, and
if it can escape through a valve into a chamber, 1t will do so,
even when the pressure in the chamber is greater than that due
to the head of water.

It is on this principle that the hydraulic ram is constructed,
by which a small quantity of water may be raised to a great height
by means of a large quantity flowing down from a much lower
level.

548.7 These eflects of the inertia of the fluid in the tube depend
solely on the quantity of fluid running through the tube, on its
length, and on its seetion in different parts of its length. They
do not depend on anything outside the tube, nor on the form into
which the tube may be bent, provided its length remains the
same.

In the case of the wire conveying a current this is not the case,
for if a long wire is doubled on itself the effect is very small, if
the two parts are separated from each other it is greater, if it
1s coiled up into a helix it is still greater, and greatest of all 1if]
when so coiled, a piece of soft iron is placed inside the coil.

Again, if a second wire is coiled up with the first, but insulated
from it, then, if the second wire does not form a closed circuit,
the phenomena are as before, but if the second wire forms a closed
circuit, an Induction current is formed in the second wire, and
the eflects of self-induction in the first wire are retarded.

549.7 These results shew clearly that, if the phenomena are due
to momentum, the momentum is certainly not that of the electricity
in the wire, because the same wire, eonveying the sume current,
exhibits effects which differ according to its form; and even when
its form remains the same, the presence of other bodies, such as
a piece of iron or a closed metallic circuit, affects the result.

550.]7 It is difficult, however, for the mind which has once
recognised the analogy between the phenomena of self-induction
and those of the motion of material bodies, to abandon altogether
the help of this analogy, or to admit that it is entirely superficial
aud misleading. The fundamental dynamical idea of matter, as
capable by its motion of becoming the recipient of momentum and
of energy, is so interwoven with our forms of thought that, when-
ever we catch a glimpse of it in any part of nature, we feel that
a path is before us leading, sooner or later, to the complete under-
standing of the subject.
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551.] In the case of the electric current, we find that, when the
electromotive force begins to act, it does not at once produee the
full current, but that the current rises gradually. What is the
electromotive force doing during the time that the opposing re-
sistance is not able to balance it? It is increasing the electric
current.

Now an ordinary force, acting on a body in the direction of its
motion, Increases its momentum, and communicates to it kinetic
energy, or the power of doing work on account of ils motion.

In like manner the unresisted part of the electromotive force has
been employed in increasing the electrie eurrent. Has the clectrie
current, when thus produced, either momentum or kinetic energy ?

‘We have already shewn that it has something very like mo-
mentum, that it resists being suddenly stopped, and that it can
exert, for a short time, a great electromotive force.

But a conducting circuit in which a current has been set up
has the power of doing work in virtue of this eurrent, and this
power canmnot be sald to be something very like energy, for it
is really and truly energy.

Thus, if the current be left to itself, it will continue to circulate
till it is stopped by the resistance of the circuit. Before it is
stopped, however, it will have generated a certain quantity of
heat, and the amount of this heat in dynamical measure is equal
to the energy originally existing in the current.

Again, when the current is left to itself, it may be made to
do mechanical work by moving magnets, and the inductive effect
of these motions will, by Lenz’s law, stop the current sooner than
the resistunce of the cireuit alone would have stopped it. TIn this
way part of the energy of the current may be transformed into
mechanical work instead of heat.

552.] It appears, therefore, that a system containing an electric
current is a seat of energy of some kind; and since we can form
no conception of an electric current except as a kinetic pheno-
menon ¥, its energy must be kinetic energy, that is to say, the
energy which a moving body has in virtue of its motion.

We have already shewn that the electricity in the wire cannot
be considered as the moving body in which we are to find this
energy, for the energy of a moving body does not depend on
anything external to itself, whereas the presence of other bodies
near the current alters its energy.

* Faraday, Exp. Res. (283.)
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We are therefore led to enquire whether there may not be some
motion going on in the space outside the wire, which is not occupied
by the electric current, but in which the electromagnetic effects of
the current are manifested.

I shall not at present enter on the reasons for looking in one
place rather than another for such motions, or for regarding these
motions as of one kind rather than another.

What I propose now to do is to examine the consequences of
the assumption that the phenomena of the electric current are those
of a moving system, the motion being communicated from one part
of the system to another by forces, the nature and laws of which
we do not yet even attempt to define, because we can eliminate
these forces from the equations of motion by the method given
by Lagrange for any connected system.

In the next five chapters of this treatise I propose to deduce
the main structure of the theory of electricity from a dynamical
hypothesis of this kind, instead of following the path which has
led Weber and other investigators to many remarkable discoveries
and experiments, and to conceptions, some of which are as beautiful
as they are bold. I have chosen this method because I wish to
shew that there are other ways of viewing the phenomena which
appear to me more satisfactory, and at the same time are more
consistent with the methods followed in the preceding parts of this
book than those which proceed on the hypothesis of direct action
at a distance.
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CHAPTER V.

ON THE EQUATIONS OF MOTION OF A CONNECTED SYSTEM.

553.] Ix the fourth section of the second part of his Mécanigue
Analytique, Lagrange has given a method of reducing the ordinary
dynamical equations of the motion of the parts of a connected
system to a number equal to that of the degrees of freedom of
the system.

The equations of motion of a connected system have been given
in a different form by Hamilton, and have led to a great extension
of the higher part of pure dynamies *.

As we shall find 1t necessary, in our endeavours to bring electrical
phenomena within the province of dynamics, to have our dynamical
ideas in a state fit for direct application to physical questions, we
shall devote this chapter to an exposition of these dynamical ideas
from a physical point of view.

554.] The aim of Lagrange was to bring dynamies under the
power of the caleculus. IIe hegan by expressing the elementary
dynamical relations in terms of the corresponding relations of pure
algebraical quantities, and from the equations thus obtained he
deduced bis final equations by a purely algebraical process. Certain
quantities (expressing the reactions between the parts of the system
called into play by its physical connexions) appear in the equations
of motion of the component parts of the system, and Lagrange’s
investigation, as seen from a mathematical point of view, is a
method of eliminating these quantities from the final equations.

In following the steps of this elimination the mind is exercised
in calculation, and should therefore be kept free from the intrusion
of dywamical 1deas. Our aim, on the other hand, is to cultivate

* See Professor Cayley’s ' Report on Theoretical Dynamics,” British Association,
1857; and Thomson and Tait's Nutural Philosophy.
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our dynamical ideas. We therefore avail ourselves of the labours
of the mathematicians, and retranslate their results from the lan-
guage of the calculus into the language of dynamics, so that our
words may call up the mental image, not of some algebraical
process, but of some property of moving bodies.

The language of dynamics has been considerably extended by
those who have expounded in popular terms the doctrine of the
Conservation of Energy, and it will be seen that much of the
following statement is suggested by the investigation in Thomson
and Tait’s Natural Philosoply, especially the method of beginning
with the theory of impulsive forces.

I have applied this method so as to avoid the explicit con-
sideration of the motion of any part of the system except the
coordinates or variables, on which the motion of the whole depends.
It is doubtless important that the student should be able to trace
the connexion of the motion of each part of the system with that
of the variables, but it is by no means necessary to do this in
the process of obtaining the final equations, which are independent
of the particular form of these connexions.

The Variables.

555.] The number of degrees of freedom of a system is the
number of data which must be given in order completely to
determine its position. Different forms may be given to these
data, but their number depends on the nature of the system itself,
and cannot be altered.

To fix our ideas we may conceive the system connected by means
of suitable mechanism with a number of moveable pieces, each
capable of motion along a straight line, and of no other kind of
motion. The imaginary mechanism which connects each of these
pieces with the system must be conceived to be free from friction,
destitute of inertia, and incapable of being strained by the action
of the applied forces. The use of this mechanism is merely to
assist the imagination in ascribing position, velocity, and momentum
to what appear, in Lagrange’s investigation, as pure algebraical
quantities.

Let ¢ denote the position of one of the moveable pieces as defined
by its distance from a fixed point in its line of motion. We shall
distinguish the values of ¢ corresponding to the different pieces
by the suflixes |, ,, & When we are dealing with a set of
quantities belonging to one picce only we may omit the suffix.
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When the values of all the variables (¢) are given, the position
of each of the moveable pieces is known, and, in virtue of the
imaginary mechanism, the configuration of the entire system 1Is
determined.

The Felocilies.

556.7 During the motion of the system the configuration changes
in some definite manner, and since the configuration at each instant
is fully defined by the values of the variables (g), the velocity of
every part of the system, as well as its configuration, will be eom-
pletely defined if we know the values of the variables (g), together
dg
ai’

with their velocities ( or, according to Newton’s notation, g)

The Forces.

557.7 By a proper regulation of the motion of the variables, any
motion of the system, consistent with the nature of the connexions,
may be produced. In order to produce this motion by moving
the variable pieces, forees must be applied to these pieces.

‘We shall denote the force which must be applied to any variable
g, by F,. The system of forces (#) is mechanically equivalent (in
virtue of the connexions of the system) to the system of forces,
whatever it may be, which really produces the motion.

The Momenta.

558.] When a body moves in such a way that its configuration,
with respect to the force which acts on it, remains always the same,
(as, for instance, in the case of a foree acting on a single particle in
the line of its motion,) the moving force is measured by the rate
of increase of the momentum. If # is the moving force, and p the

momentum, e ﬁlp ’
dt
whence P :/th.

The time-integral of a force is called the Impulse of the force;
so that we may assert that the momentum is the impulse of the
force which would bring the body from a state of rest into the given
state of motion.

In the case of a connected system in motion, the configuration is
continually changing at a rate depending on the velocities (g), so
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that we can no longer assume that the momentum is the time-
integral of the force which acts on it.

But the increment 84 of any variable cannot be greater than
¢ 8¢, where 37 is the time during which the increment takes place,
and 4 1s the greatest value of the velocity during that time. In the
case of a system moving from rest under the action of forces always
in the same direction, this is evidently the final velocity.

If the final velocity and conficuration of the system are given,
we may conceive the velocity to be communicated to the sysiem
in a very small time 8¢, the original configuration differing from
the final configuration by quantities 8¢,, 8g,, &c., which arc less
than 4, 3¢, ¢,d¢, &e., respectively,

The smaller we suppose the increment of time 8¢, the greater
must be the impressed forces, but the time-integral, or impulse,
of each force will remain finite. The limiting value of the impulse,
when the time is diminished and ultimately vanishes, is defined
as the imstanfaneous impulse, and the momentum p, corresponding
to any variable ¢, is defined as the impulse corresponding to that
variable, when the system is brought instantaneously from a state
of rest 1uto the given state of motion.

This conception, that the momenta are capable of being produced
by instantaneous impulses on the system at rest, is introduced only
as a method of defining the magnitude of the momenta, for the
momenta of the system depend only on the instantaneous state
of motion of the system, and not on the process by which that state
was produced.

In a connected system the momentum corresponding to any
variable is in general a linear function of the velocities of all the
variables, instead of being, as in the dynamics of a particle, simply
proportional to the velocity.

The impulses required to change the velocities of the system
suddenly from ¢, ¢,, &e. to gy, 4., &c. are evidently equal to
' — Py Py — Py, the changes of momentum of the several variables.

Work done by a Small Impulse.

559.]7 The work done by the force 7} during the impulse is the
space-integral of the foree, or

W= f Fdy,,

=/‘F‘1 G, dt.
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If ¢ is the greatest and 4,” the least value of the velocity ¢1
during the action of the foree, # must be less than

it [Fat or i (i)
and greater than g'l"j Fdt or ¢”(p/—p).

If we now suppose the impulse f Fdt to be diminished without

limit, the values of ¢," and g,” will approach and ultimately coincide
with that of ¢;, and we may write p;"— p; = 82,, so that the work
done is ultimately 3, = g, 5.
or, the work done by a very small impulse is ultimately the product
of the impulse and the velocily.

Increment of the Kinetic Energy.

560.] When work is done in setting a conservative system in
motion, energy is communicated to it, and the system becomes
capable of doing an equal amount of work against resistances
before it is reduced to rest.

The energy which a system possesses in virtue of its motion
1s called 1ts Kinetie Energy, and is communicated to it in the form
of the work done by the forces which set it in motion.

If T be the kinetic energy of the system, and if it becomes
T+ 87, on account of the action of an infinitesimal impulse whose
components are &p;, 8p,, &c., the increment &7’ must be the sum
of the quantities of work done by the components of the impulse,

or in symbols, 3T = G, 8p,+ 4y 0 py + e,

The instantaneous state of the system is completely defined if
the variables and the momenta are given. Hence the kinetic
energy, which depends on the instantaneous state of the system,
can be expressed in terms of the variables (), and the momenta (p).
This is the mode of expressing 7' introduced by Hamilton. When
T is expressed in this way we shall distinguish it by the suffix ,
thus, 7.
The complete variation of 7, is

7]

171 AT
37, = 2(5’71)—" 5]9)+ .\:('{/; Bq)- (2)
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The last term may be written
s (% 73t);
which diminishes with 8¢, and ultimately vanishes with it when the
impulse becomes instantaneous.

Hence, equating the coefficients of 8p in equations (1) and (2),

we obtain . dT, , 3)
ap
or, the velocity corresponding to the variable q is the differential
coefficient of T, with respect to the corresponding momentum p.

We have arrived at this result by the consideration of impulsive
forces. By this method we have avoided the consideration of the
change of configuration during the action of the forces. But the
instantaneous state of the system is in all respects the same, whether
the system was brought from a state of rest to the given state
of mofion by the transient application of impulsive forces, or
whether it arrived at that state in any manner, however gradual.

In other words, the variables, and the corresponding velocities
and momenta, depend on the actual state of motion of the system
at the given instant, and not on its previous history.

Hence, the equation (3) is equally valid, whether the state of
motion of the system is supposed due to impulsive forces, or to
forces acting in any manner whatever.

‘We may now thercfore dismiss the consideration of impulsive
forces, together with the limitations imposed on their time of
action, and on the changes of configuration during their action.

Hamilton’s Equations of Motion.
561.] We have already shewn that
a1, .
=q. 4
7 =4 (%)
Let the system move in any arbitrary way, subject to the con-
ditions imposed by its connexions, then the variations of p and ¢ are

7,
M:‘j}’az, 5g = ¢ ot. (5)
aT, .
Hence ,d])r: op = %;gat,
_ (6)
= %aq,
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and the complete variation of 7, is

al, aT
6Tp =3 Wpap + —i;aq),
dp dTl,
— e . 7
== (((Zt dq dg) @

But the increment of the kinetic energy arises from the work
done by the impressed forces, or
3T, = = (Fdg). (8)
In these two expressions the variations 3¢ are all independent of
each other, so that we are entitled to equate the coefficients of each
of them in the two expressions (7) and (8). We thus obtain
P dp,  dT, ) 9)
dg,
where the momentum p, and the force F, belong to the variable g¢,.
There are as many equations of this form as there are variables.
These equations were given by Hamilton. They shew that the

force corresponding to any variable is the sum of two parts. The
first part is the rate of increase of the momentum of that variable
with respect to the time. The second part is the rate of increase
of the kinetic energy per unit of increment of the variable, the
other variables and all the momenta being constant,

The Kinetic Energy expressed in Terms of the Momenta and
Velocities.

562.] Let p,, ps, &ec. be the momenta, and ¢, g7,, &c. the
velocities at a given instant, and let p;, Py, &e., q;, Gy, &e. be
another system of momenta and velocities, such that

PL = npy, q; = nq,, &e. (10)

Tt is manifest that the systems p, q will be consistent with each
other if the systems p, ¢ are so.

Now let # vary by 8#. The work done by the force 7, is

EB% =q15P1 = 9'1}71'”'5”. (11)

Let # increase from 0 to 1, then the system is brought from

a state of rest into the state of motion (¢2), and the whole work
expended in producing this motion is

. . 1
(qlﬁ1+qzﬂ2+&c.)fo ndn. (12)

1
But [ ndn = 4,

~'Q
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and the work spent in producing the motion is equivalent to the
kinetic energy. Hence

Toi = ¥ (P g1+ Py ga+ &e), (13)
where 7},; denotes the kinetic energy expressed in terms of the
momenta and velocities. The variables ¢;, ¢,, &e. do not enter into
this expression. :

The kinetic energy is therefore half the sum of the products of
the momenta into their corresponding velocities.

‘When the kinetic energy is expressed in this way we shall denote
it by the symbol 7,;. It is a function of the momenta and velo-
cities only, and does not involve the variables themselves,

563.7 There is a third method of expressing the kinetic energy,
which is generally, indeed, regarded as the fundamental one. By
solving the equations (3) we may express the momenta in terms
of the velocities, and then, introducing these values in (13), we shall
have an expression for 7' involving only the velocities and the
variables. When 7' is expressed in this form we shall indicate it
by the symbol 7. This is the form in which the kinetic energy is
expressed in the equations of Lagrange.

564.] It is manifest that, since 7},, 7y, and 7,4 are three different
expressions for the same thing,

T4 Tj—2T,; = o0,
or Lo+ 15— py G1— 22 G —&e. = 0. (14)
Ilence, if all the quantities p, ¢, and ¢ vary,

ar, . ar. .
(@“ —4)dp + (72 — Ga) 3 + &e.

aT;
+d_ p1)691 (—-—]91)591-{-&0

( +d )5 1+(dp+§ )591+&C =0. (15)

The variations 8}7 are not independent of the variations 8¢ and
&g, so that we cannot at once assert that the coefficient of each
variation in this equation is zero. DBut we know, from equations
3), that ar, .

( ),ta ——p—g1=0, &C_, (16)
so that the terms involving the variations & p vanish of themselves.

The remaining variations 34 and &g are now all independent,
so that we find, by equating to zero the coeflicients of 34,, &e,

_ary a7,
L (17)
dgl Pz =

1 dgz
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or, the components of momentum are the rléﬁ'e)'ential' cogflicients of T
with respect to the corvesponding velocities.
Again, by equating to zero the coefficients of 3¢, &e.,
al, (4T, 18
dyq, * dy, 0 18
or, the differential coefficient of the kinetic energy with respect to any
variable g, s equal in magnitude but opposite in sign when T is
expressed as a function of the velocities instead of as a function of
the momenta.
In virtue of equation (18) we may write the equation of motion (9),

_dn _ 4l (19)
T dt dg
d aT, 4T,
= - 5 — = 20
* "=y, T, (=0)

which is the form in which the equations of motion were given by
Lagrange.

565.] In the preceding investigation we have avoided the con-
sideration of the form of the function which expresses the kinetic
energy in terms either of the velocities or of the momenta. The
only explicit form which we have assigned to it is

Tpi = 3 (Pr 1+ prg+&el), (21)
in which 1t is expressed as half the sum of the products of the
momenta each into its corresponding velocity.

‘We may express the velocities in terms of the differential co-
efficients of 7p with respect to the momenta, as in equation (3),

ar,
-T —%( ld +p2dpp+&c) (22)

This shews that 7, is a homogeneous function of the second
degree of the momenta p;, p,, &e.
We may also express the momenta in terms of 7;, and we find
Ty= 4G T+ G+ ) (23
which shews that 7} is a homogeneous function of the second degree
with respect to the velocities ¢y, 42, &¢.
If we write

d2T; a1y
P, for dT Py, for 77 dg.’ &e.
a7, @*1, .
and Qll for d—};}; N le for d]’1d]72, &e. ’
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then, since both 7; and 7}, are functions of the second degree of
¢ and of p respectively, both the P’s and the @’s will be functions
of the variables ¢ only, and independent of the velocities and the
momenta, We thus obtain the expressions for 7,

2T = Png®+22Py 9 g+ &e, (24)

27, = Qur’®+26wpp,+&e. (25)

The momenta are expressed in terms of the velocities by the
linear equations  p, = Py, g3+ Pyy g+ &e., (26)

and the velocities are expressed in terms of the momenta by the
linear equations ¢, = Q) 7+ @19, + &e. (27)

In treatises on the dynamics of a rigid body, the coeflicients
corresponding to P,;, in which the suffixes are the same, are called
Moments of Inertia, and those corresponding to P,,, in which
the suffixes are different, are called Produets of Inertia. We may
extend these names to the more general problem which is now
before us, in which these quantities are not, as in the case of a
rigid body, absolute constants, but are functions of the variables
915 955 &e.

In like manner we may call the coefficients of the form @,
Moments of Mobility, and those of the form @, Products of
Mobility. Tt is not often, however, that we shall have oceasion
to speak of the coeflicients of mobility.

566.] The kinetic energy of the system is a quantity essentjally
positive or zero. Hence, whether it be expressed in terms of the
velocities, or in terms of the momenta, the coefficients must be
such that no real values of the variables can make 7' negative.

‘We thus obtain a sct of necessary conditions which the values of
the coefficients £ must satisfy.

The quantities 7,;, P,,, &c., and all determinants of the sym-
metrical form P, P, P,

Py Py Py
Py Py Py

which can be formed from the system of coefficients must be positive

or zero. The number of such conditions for # variables is 2" —1.
The coefficients @ are subject to conditions of the same kind.
567.] In this outline of the fundamental principles of the dy-

namics of a connected system, we have kept out of view the

mechanism by which the parts of the system are connected. We
VOL. II. o
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have not even written down a set of equations to indicate how
the motion of any part of the system depends on the variation
of the variables. 'We have confined our attention to the variables,
their velocities and momenta, and the forces which act on the
pieces representing the varables. Qur only assumptions are, that
the connexions of the system are such that the time i1s not explicitly
contained in the equations of condition, and that the principle of
the conservation of energy is applicable to the system.

Such a description of the methods of pure dynamics is not un-
necessary, because Lagrange and most of his followers, to whom
we are indebted for these methods, have in general confined them-
selves to a demonstration of them, and, in order to devote their
attention to the symbols before them, they have endeavoured to
banish all ideas except those of pure quantity, so as not only to
dispense with diagrams, but even to get rid of the ideas of velocity,
momentum, and energy, after they have been once for all sup-
planted by symbols in the ofiginal equations. In order to be able
to refer to the results of this analysis in ordinary dynamical lan-
guage, we have endeavoured to retranslate the principal equations
of the method into language which may be intelligible without the
use of symbols.

As the development of the ideas and methods of pure mathe-
matics has rendered it possible, by forming a mathematical theory
of dynamics, to bring to light many truths which could not have
been discovered without mathematical training, so, if we are to
form dynamical theories of other sciences, we must have our minds
imbued with these dynamical truths as well as with mathematical
methods.

In forming the ideas and words relating to any science, which,
like electricity, deals with forces and their effects, we must keep
constantly in mind the ideas appropriate to the fundamental science
of dynamics, so that we may, during the first development of the
science, avoid inconsistency with what is already established, and
also that when our views become clearer, the language we have
adopted may be a help to us and not a hindrance.

IRIS - LILLIAD - Université Lille 1



CHAPTER VI

DYNAMICAL THEORY OF ELECTROMAGNETISM.

568.] WE have shewn, in Art. 552, that, when an electric current
exists in a conducting circuit, it has a capacity for doing a certain
amount of mechanical work, and this independently of any external
electromotive force maintaining the current. Now ecapacity for
performing work is nothing eclse than energy, in whatever way
it arises, and all energy is the same in kind, however it may differ
in form. The energy of an electric current is either of that form
which consists in the actual motion of matter, or of that which
consists in the capacity for being set in motion, arising from forces
acting between bodies placed in certain positions relative to each
other.

The first kind of energy, that of motion, is called Kinetic energy,
and when once understood it appears so fundamental a fact of
nature that we can hardly conceive the possibility of resolving
it into anything else. The second kind of energy, that depending
on position, is called Potential energy, and is due to the action
of what we call forces, that is to say, tendencies towards change
of relutive position. With respect to these forces, though we may
accept their existence as a demonstrated fact, yet we always feel
that every explanation of the mechanism by which bodies are set
in motion forms a real addition to our knowledge.

569.] The electric current cannot be conceived except as a kinetic
phenomenon, lven Faraday, who constantly endeavoured to
emancipate his mind from the influence of those suggestions which
the words ¢ electric current’ and * electric fluid’ are too apt to carry
with them, speaks of the electric current as © something progressive,
and not a mere arrangement’ *.

* Exp, Bes., 283.
02
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The effects of the current, such as electrolysis, and the transfer
of electrification from one body to another, are all progressive
actions which require time for their accomplishment, and are there-
fore of the nature of motions.

As to the veloaty of the current, we have shewn that we know
nothing about it, it may be the tenth of an inch in an hour, or
a hundred thousand miles in a second *. So far are we from
knowing its absolute value in any case, that we do not even know
whether what we call the positive direction is the actual direction
of the motion or the reverse.

But all that we assume here is that the electric current involves
motion of some kind. That which 1s the cause of electrie currents
has been called Electromotive Force. This name has long been
used with great advantage, and has never led to any inconsistency
in the language of science. Electromotive force is always to be
understood to act on electricity only, not on the bodies in which
the electricity resides. It is never to be confounded with ordinary
mechanical force, which acts on bodies only, not on the electricity
in them. If we ever come to know the formal relation between
electricity and ordinary matter, we shall probably also know the
relation between electromotive force and ordinary force.

570.] When ordinary force acts on a body, and when the body
yields to the force, the work done by the force is measured by the
product of the force into the amount by which the body yields.
Thus, in the case of water forced through a pipe, the work done
at any section is measured by the fluid pressure at the section
multiplied into the quantity of water which crosses the section.

In the same way the work done by an electromotive force is
measured by the produet of the electromotive force into the quantity
of electricity which crosses a section of the conductor under the
action of the electromotive force.

The work done by an electromotive foree 1s of exactly the same
kind as the work done by an ordinary force, and both are measured
by the same standards or units.

Part of the work done by an electromotive force acting on a
conducting circuit is spent in overcoming the resistance of the
circuit, and this part of the work is thereby converted into heat.
Another part of the work is spent in producing the electromag-
netic phenomena observed by Ampere, in which conductors are
made to move by electromagnetic forces. The rest of the work

* Erp. Res., 1648.
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is spent in increasing the kinetic energy of the current, and the
effects of this part of the action are shewn in the phenomena of the
induction of currents observed by Faraday.

‘We therefore know enough about electric currents to recognise,
in a system of material conductors carrying currents, a dynamical
system which is the seat of energy, part of which may be kinetic
and part potential.

The nature of the connexions of the parts of this system is
unknown to us, but as we have dynamical methods of investigation
which do not require a knowledge of the mechanism of the system,
we shall apply them to this case.

‘We shall first examine the consequences of assuming the most
general form for the function which expresses the kinetic energy of
the system.

571.1 Let the system consist of a number of conducting circuits,
the form and position of which are determined by the values of
a system of variables #,, #,, &c., the number of which is equal
o the number of degrees of freedom of the system.

If the whole kinetic energy of the system were that due to the
motion of these conductors, it would be expressed in the form

= 1 (2 7)) 2.2 + &e. + (2, 2,) %, 4, + &,
where the symhols (#,, z;, &c.) denote the quantities which we have
called moments of inertia, and (z, o, &c.) denote the products of
inertia.

If X’ is the impressed foree, tending to increase the coordinate z,
which is required to produce the actual motion, then, by Lagrange’s
equation, d 41T AT _ X

dt de  de ™ T

When 7' denotes the energy due to the visible motion only, we
shall indicate it by the suflix ,,, thus, 7,,.

But in a system of conductors carrying electric currents, part of
the kinctic energy is due to the existence of these currents. ILet
the motion of the electricity, and of anything whose motion is
governed by that of the electricity, be determined by another set
of coordinates #;, ,, &c., then 7 will be a homogeneous function
of squares and products of all the velocities of the two sets of
coordinates. 'We may therefore divide 7 into three portions, in the
first of which, 7,,, the velocities of the eoordinates z only oceur,
while in the second, 7, the velocities of the coordinates y only
oceur, and in the third, 7, each term contains the product of the
velocities of two coordinates of which one is 2 and the other z.
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We have therefore  7_ 7 4 T+ Do

where T, = (2, 2,) %2 + &e.+ (&) 23) 71 %+ &,

ZL = é (3/1,?1)3/-12 + &e. +(f/1 yﬂ) 9.1.?'2 +&C.,
Tne= (2, 31) 215, + &e.

572.] In the general dynamical theory, the coefficients of every
term may be functions of all the coordinates, both # and y. In
the case of electric currents, however, it is easy to see that the
coordinates of the class ¥ do not enter into the coefficients.

For, if all the electric currents are maintained constant, and the
conductors at rest, the whole state of the field will remain constant,.
But in this case the coordinates y are variable, though the velocities
7 are constant. Hence the coordinates y cannot enter into the
expression for 7} or into any other expression of what actually takes
place.

Besides this, in virtue of the equation of continuity, if the con-
ductors are of the nature of linear circuits, only one variable is
required to express the strength of the current in each conductor.
Tt the veloeities %;, 9,, &ec. represent the strengths of the currents
in the several conductors.

All this would be true, if, instead of electric currents, we had
currents of an incompressible fluid running in flexible tubes. In
this case the velocities of these currents would enter into the
expression for 7, but the coefficients would depend only on the
variables #, which determine the form and position of the tubes.

In the case of the fluid, the motion of the fluid in one tube does
not directly affect that of any other tube, or of the fluid in it.
Hence, 1in the value of 7}, only the squares of the velocities 7, and
not their products, oceur, and in 7, any velocity y is associated
only with those velocities of the form z which belong to its own
tube.

In the case of electrical currents we know that this restriction
does not hold, for the currents in different circuits act on each other.
Hence we must admit the existence of terms involving products
of the form 7, #,, and this involves the existence of something in
motion, whose motion depends on the strength of both electric
currents 7, and g,. This moving matter, whatever it is, 1s not
confined to the interior of the conductors carrying the two currents,
but probably extends throughout the whole space surrounding them.

578.] Let us next consider the form which Lagrange’s equations
of motion assume in this case. Let X° be the impressed force
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corresponding to the coordinate z, one of those which determine
the form and position of the conducting circuits. This is a force
in the ordinary sense, a tendency towards change of position. It
is given by the equation

‘We may consider this force as the sum of three parts, corre-
sponding to the three parts into which we divided the kinetic
energy of the system, and we may distinguish them by the same

suffixes. Thus X =Xt X b X e
The part X’,, 18 that which depends on ordinary dynamical con-
siderations, and we need not attend to it.
Since 7, does not contain £, the first term of the expression
for X’ is zero, and its value is reduced to
arT
X, =——=.
¢ dz
This is the expression for the mechanical force which must be
applied to a conductor to balance the electromagnetic force, and it

asserts that it is measured by the rate of diminution of the purely
electrokinetic energy due to the variation of the coordinate . The
electromagnetic force, X,, which brings this external mechanical
force into play, is equal and opposite to it, and is therefore measured
by the rate of increase of the electrokinetic energy corresponding
to an increase of the coordinate @. The value of X_, since it depends
on squares and products of the currents, remains the same if we
reverse the directions of all the currents.
The third part of X” is

The quantity 7. contains only products of the form £z, so that
AT e

dz
first term, therefore, depends on the rate of variation of the
strengths of the currents, and indicates a mechanical force on
the conductor, which is zero when the currents are constant, and
which is positive or negative according as the currents are in-
creasing or decreasing in strength.

The second term depends, not on the variation of the currents,
but on their actual strength. As it is a linear function with
respect to these currents, it changes sign when the currents change

is a Linear function of the strengths of the currents 7. The
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sign. Since every term involves a velocity 4, it is zero when the
conductors are at rest.

We may therefore investigate these terms separately, If the
conductors are at rest, we have only the first term to deal with.
If the currents are constant, we have only the second.

674.] As it is of great importance to determine whether any
part of the kinetic energy is of the form 7., consisting of products
of ordinary velocities and strengths of electric currents, it is de-
sirable that experiments should be made on this subject with great
care.

The determination of the forees acting on bodies in rapid motion
is difficult. Tt us therefore attend to the first term, which depends
on the variation of the strength of the current.

If any part of the kinetic energy depends on the product of
an ordinary velocity and the strength of a
current, it will probably be most easily ob-
served when the velocity and the current are
I in the same or in opposite directions, We

therefore take a circular coil of a great many
windings, and suspend 1t by a fine vertical wire,
so that its windings are borizontal, and the
coil i3 capable of rotating about a vertical axis,
either In the same direction as the current in
the coil, or in the opposite direction.

We shall suppose the current to be conveyed
into the coil by means of the suspending wire,

and, after passing round the windings, to com-
f plete its circult by passing downwards through
a wire in the same line with the suspending
wire and dipping into a cup of mercury.
Since the action of the horizontal component
Fig. 33. of terrestrial magnetism would tend to- turn
this coil round a horizontal axis when the
current flows through it, we shall suppose that the horizontal com-
ponent of terrestrial magnetism is exactly neutralized by means
of fixed magnets, or that the experiment is made at the magnetic
pole. A vertical mirror is attached to the coil to detect any motion
in azimuth.

Now let a current be made to pass through the coil in the
direction N.E.S.W. If electricity were a fluid like water, flowing
along the wire, then, at the moment of starting the current, and as
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long as its velocity is increasing, a force would require to be
supplied to produce the angular momentum of the fluid in passing
round the coil, and as this must be supplied by the elasticity of
the suspending wire, the coil would at first rotate in the opposite
direction or W.S.E.N,, and this would be detected by means of
the mirror. On stopping the current there would be another
movement of the mirror, this time in the same direction as that
of the current,

No phenomenon of this kind has yet Leen observed. Such an
action, if it existed, might be easily distinguished from the already
known actions of the current by the following peculiarities.

(1) Tt would occur only when the strength of the current varies,
as when contact is made or broken, and not when the current is
constant,

All the known mechanical actions of the current depend on the
strength of the currents, and not on the rate of variation. The
electromotive action in the case of induced ecurrents cannot be
confounded with this electromagnetic action.

(2) The direction of this action would be reversed when that
of all the currents in the field is reversed.

All the known mechanical actions of the current remain the same
when all the currents are reversed, sinee they depend on squares
and products of these currents.

If any action of this kind were discovered, we should be able
to regard one of the so-called kinds of electricity, either the positive
or the negative kind, as a real substance, and we should be able
to describe the electrie current as a true motion of this substance
in a particular direction. In fact, if electrical motions were in any
way comparable with the motions of ordinary matter, terms of the
form 7, would exist, and their existence would be manifested by
the mechanical force X,,..

According to Fechner’s hypothesis, that an electric current con-
sists of two equal currents of positive and negative electricity,
flowing in opposite directions through the same conductor, the
terms of the second class 7, would vanish, each term belonging
to the positive current being accompanied by an equal term of
opposite sign belonging to the negative current, and the phe-
nomens depending on these terms would have no existence.

It appears to me, however, that while we derive great advantage
from the recogmnition of the many analogies between the electric
current and a current of a material fluid, we must carefully avoid
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making any assumption not warranted by experimental cvidence,
and that there is, as yet, no experimental evidence to shew whether
the electric current is really a current of a material substance, or
a double current, or whether its velocity is great or small as mea-~
sured in feet per second.

A knowledge of these things would amount to at least the begin-
nings of a complete dynamical theory of electricity, in which we
should regard electrical action, not, as in this treatise, as a phe-
nomenon due to an unknown cause, subject only to the general
laws of dynamiecs, but as the result of known motions of known
portions of matter, in which not only the total effects and final
results, but the whole intermediate mechanism and details of the
motion, are taken as the objects of study.

575.] The experimental investigation of the second term of X,

m

AdTm. . . i .
namely —a—,x—', 18 more difficult, as it involves the observation of

the effect of forces on a body in rapid motion.

The apparatus shewn in Fig. 34, which I had constructed in
1861, 1s intended to test the existence of a force of this kind.
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The electromagnet 4 is capable of rotating about the horizontal
axis BB, within a ring which itself revolves about a vertical
axis.

Let A, B, C be the moments of inertia of the electromagnet
about the axis of the coil, the horizontal axis BA’, and a third axis
CC’ respectively.

Let 0 be the angle which CC” makes with the vertical, ¢ the
azimuth of the axis BB’, and { a variable on which the motion of
electricity in the coil depends.

Then the kinetic energy of the electromagnet may be written

27 = A¢?sin? 0+ B2 4 C¢? cos? § + F (¢ sin 642,
where £ is a quantity which may be called the moment of inertia
of the electricity in the coil.

If © is the moment of the impressed force tending to increase 9,
we have, by the equations of dynamies,

©=235 %’ —{(4—C) ¢?sin 6 cos 8+ E ¢ cos 0 (¢ sin 0 + 1)}

By making ¥, the impressed force tending to increase , equal

to zero, we obtain ] )

$sinb+y =y,
a constant, which we may consider as representing the strength of
the current in the coil.

If C is somewhat greater than 4, ® will be zero, and the equi-
librium about the axis B8 will be stable when

By
(C—D)¢

This value of @ depends on that of y, the electric eurrent, and
is positive or negative according to the direction of the current.

The current is passed through the coil by its bearings at B
and B, which are connected with the battery by means of springs
rubbing on metal rings placed on the vertical axis.

sin § =

To determine the value of 8, a disk of paper is placed at G,
divided by a diamecter parallel to BB  into two parts, one of which
is painted red and the other green. l

‘When the instrument is in motion a red circle is seen at C
when @ is positive, the radius of which indicates roughly the value
of 8. 'When 0 is negative, a green circle is seen at C.

By means of nuts working on screws attached to the electro-
magnet, the axis CC” i1s adjusted to be a principal axis having
its morment of incrtia just exceeding that round the axis 4, so as

IRIS - LILLIAD - Université Lille 1



204 ELECTROKINETICS. [576.

to make the instrument very sensible to the action of the force
if it exists.

The chief difficulty in the experiments arose from the disturbing
action of the earth’s magnetic foree, which caused the clectro-
magnet to act like a dip-needle. The results obtained were on this
account very rough, but no evidence of any change in 9 could be
obtained even when an iron core was inserted in the coil, so as
to make 1t a powerful electromagnet,

If, therefore, a magnet contains matter in rapid rotation, the
angular momentum of this rotation must be very small compared
with any quantities which we can measure, and we have as yet no
evidence of the existence of the terms 7, derived from their me-
chanical action.

576.] Let us next consider the forces acting on the currents
of electricity, that is, the electromotive forces.

Let ¥ be the effective clectromotive force due to induction, the
electromotive force which must act on the circuit from without
to balance it is ¥'= — ¥, and, by Lagrange’s equation,

, ad dT dT

Since there are no terms in 7 involving the ecoordinate g, the
second term is zero, and Y is reduced to its first term. Hence,
electromotive force cannot exist in a system at rest, and with con-
stant currents.

Again, if we divide Y into three parts, Y, , ¥, , and ¥, cor-
responding to the three parts of 7, we find that, since 7, does not
contain g, ¥,, = 0.

d dT.
We al = — . e,
Ve also find Y, & 3
A
Here —d‘; is a linear function of the currents, and this part of

the clectromotive force is equal to the rate of change of this

function. This is the electromotive force of induction discovered

by Faraday. We shall consider it more at length afterwards.
577.] From the part of 7, depending on velocities multiplied by

d dT,,
currents, we find Ve = — TG
Now d—{?f is a linear function of the velocities of the conductors.

If, therefore, any terms of 7}, have an actual existence, 1t would
be possible to produce an electromotive force independently of all
existing currents by simply altering the velocities of the conductors.
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For instance, in the case of the suspended coil at Art. 559, if, when
the coil is at rest, we suddenly set it in rotation about the vertical
axis, an electromotive force would be called into action proportional
to the acceleration of this motion. It would vanish when the
motion became uniform, and be reversed when the motion was
retarded.

Now few scientific observations can be made with greater pre-
cision than that which determines the existence or non-existence of
a current by means of a galvanometer. The delicacy of this method
far exceeds that of most of the arrangements for measuring the
mechanieal force acting on a body. If, therefore, any currents could
be produced in this way they would be detected, even if they were
very feeble. They would be distinguished from ordinary currents
of induction by the following characteristics.

(1) They would depend entirely on the motions of the conductors,
and in no degree on the strength of currents or magnetic forces
already in the field.

(2) They would depend not on the absolute velocities of the con-
ductors, but on their accelerations, and on squares and products of
velocities, and they would change sign when the acceleration be-
comes a retardation, though the absolute velocity is the same.

Now in all the cases actually observed, the induced currents
depend altogether on the strength and the variation of currents in
the field, and cannot be excited in a field devoid of magnetic force
and of currents. In so far as they depend on the motion of con-
ductors, they depend on the absolute velocity, and not on the change
of velocity of these motions.

We have thus three methods of detecting the existence of the
terms of the form 7)., none of which have hitherto led to any
positive result. I have pointed them out with the greater care
because it appears to me important that we should attain the
greatest amount of certitude within our reach on a point bearing
so strongly on the true theory of electricity. ‘

Sinee, however, no evidence has yet been obtained of such terms,
I shall now proceed on the assumption that they do not exist,
or at least that they produce no sensible effect, an assumption which
will considerably simplify our dynamical theory. We shall have
occasion, however, in discussing the relation of magnetism to light,
to shew that the motion which constitutes light may eoter as a
factor into terms involving the motion which constitutes mag-
netism.
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THEORY OF ELECTRIC CIRCUITS.

578.] Wz may now confine our attention to that part of the
kinetic energy of the system which depends on squares and products
of the strengths of the electric currents. We may call this the
Electrokinetic Energy of the system. The part depending on the
motion of the conductors belongs to ordinary dynamics, and we
have shewn that the part depending on products of velocities and
currents does not exist.

Let 4,, A,, &c. denote the different conducting circuits. Let
their form and relative position be expressed 1n terms of the variables
@y, &y, &c., the number of which is equal to the number of degrees
of freedom of the mechanical system. We shall call these the
Geometrical Variables.

Let 7, denote the quantity of electricity which has crossed a given
section of the conductor 4, since the beginning of the time £ The
strength of the current will be denoted by #;, the fluxion of this
quantity.

We shall call 7, the actual current, and z, the integral current.
There is one variable of this kind for each circuit in the system.

Let 7 denote the electrokinetic energy of the system. It is
a homogeneous function of the second degree with respect to the
strengths of the currents, and is of the form

T=3%Ig"+4 1,9, + &+ M, 5,5, +&e., (1)
where the coefficients Z, M, &e. are functions of the geometrical
variables 2,, z,, &. The electrical variables 7;, y, do not enter
into the expression.

We may call Z;, L,, &e. the electric moments of inertia of the
circuits 4,, 4,, &c., and M, the electric product of inertia of the
two cireuits 4, and 4,. When we wish to avoid the language of

IRIS - LILLIAD - Université Lille 1



579.] ELECTROKINETIC MOMENTUM. 207

the dynamical theory, we shall call Z; the coefficient of self-induction
of the eircuit 4,, and M,, the coefficient of mutual induction of the
circuits 4, and 4,. M, is also called the potential of the circuit
4, with respect to 4,. These quantities depend only on the form
and relative position of the ecircuits. We shall find that in the
electromagnetic system of measurement they are quantities of the
dimension of a line. See Art. 627,

By differentiating 7" with respect to g, we obtain the quantity p,
which, in the dynamical theory, may be called the momentum
corresponding to z;. In the electric theory we shall call p; the
electrokinetic momentum of the cireuit 4,. Its value is

b= Ly g+ My g + &e.

The electrokinetic momentum of the circuit A, is therefore made
up of the product of its own current into its coefficient of self-
induction, together with the sum of the products of the eurrents
in the other circuits, each into the coefficient of mutual induction
of 4, and that other circuit.

Llectromotive Force.

579.] Let E be the impressed electromotive force in the cireuit 4,
arising from some cause, such as a voltaic or thermoelectric battery,
which would produce a current independently of magneto-electric
imnduction.

Let B be the resistance of the circuit, then, by Ohm’s law, an
electromotive force 7 is required to overcome the resistance,
leaving an electromotive force #/— Rz available for changing the
momentum of the circuit. Calling this force ¥’, we have, by the
general equations, g AT

T dt  dy ’
but since 7 does not involve g, the last term disappears.
Hence, the equation of electromotive force is
‘ . ,__dp
E—_R_y =Y = atf:
dp
T
The impressed electromotive force # is therefore the sum of two
parts. The first, £7, is required to maintain the current § against
the resistance £2. The second part is required to increase the elec-

or E:Ry-i—

tromagnetic momentum p. This i1s the electromotive force which
must be supplied from sources independent of magneto-electrie
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induction. The electromotive foree arising from magneto-electric

dp
dt
electrokinetic momentum of the circuit.

induction alone is evidently » OF, the rate of decrease of the

Flectromagnetic Force.
580.] Let X’ be the impressed mechanical force arising from
external causes, and tending to increase the variable 2. By the
ddT 4T

general equations

Since the expression for the electrokinetic energy does not contain
the velocity (£), the first term of the second member disappears,
and we find e 1

dz

Here X7 is the external force required to balance the forces arising

from electrical causes. It is usual to consider this force as the

reaction against the electromagnetic force, which we shall call X,
and which 1s equal and opposite to X",

Hence X = Q,
dz
or, the electromagnetic force tending to increase any wvariable is equal
to the rate of increase of the electrokinetic energy per unit increase of
that variable, the currents being maintained constant,

If the currents are maintained constant by a battery during a
displaccment in which a quantity, #, of work is done by electro-
motive force, the electrokinetic energy of the system will be at the
same time increased by /#. Hence the battery will be drawn upon
for a double quantity of energy, or 2%, in addition to that which is
spent in generating heat in the circuit. This was first pointed out
by Sir W. Thomson*. Compare this result with the electrostatic
property in Art. 93.

Case of Two Circuils.

581.] Let 4; be called the Primary Circuit, and 4, the Secondary
Circuit. The electrokinetic energy of the system may be written

T=1% L.712 +M.?.1.?_z +N.?.22:
where I and X are the coefficients of self-induction of the primary

* Nichol's Cyclopaedia of Physical Science, ed. 1860, Article, * Magnetism, Dy-
namical Relations of."
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and secondary circuits respectively, and M is the coeflicient .of their
mutual induction.

Let us suppose that no electromotive force acts on the secondary
cireuit except that due to the induction of the primary ecurrent.
‘We have then d
Ly = Ry g + ot (Mg, +Ngy) = 0.

Integrating this equation with respect to 4, we have
Ry, + My, +Ng, = C, aconstant,
where y, is the inlegral current in the sccondary circuit.

The method of measuring an integral current of short duration
will be described in Art. 748, and il is easy in most cases to ensure
that the duration of the secondary current shall be very short.

Let the values of the variable quantities in the equation at the
end of the time ¢ be accented, then, if y, is the integral current,
or the whole quantity of electricity which flows through a section
of the secondary circuit during the time ?,

Byyy = Mg+ Ngy— (M g+ N’ 3;).

If the secondary current arises entirely from induction, its initial
value 7, must be zero if the primary current is constant, and the
conductors at rest before the beginning of the time ¢

If the time £ is sufficient to allow the secondary current to die
away, 7,, its final value, is also zero, so that the equation becomes

Byyy = Mg, — Mg,

The integral current of the secondary circuit depends in this case

on the initial and final values of M g,.

Induced Currents.

582.] Let us begin by supposing the primary circuit broken,
or 7, = 0, and let a current 5, be established in it when contact
1s made.

The equation which determines the secondary integral current is

By gy = —Mygy.

‘When the circuits are placed side by side, and in the same direc-
tion, M 1s a positive quantity. Ilence, when contact is made in
the primary eircuit, a negative current is induced in the secondary
cireuit.

‘When the contact is broken in the primary circuoit, the primary
current ceases, and the induced current is g, where

Ry = My,.
The secondary current is in this case positive.

YOL. 11 P
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If the primary current is maintained constant, and the form or
relative position of the cireuits altered so that M becomes HM’, the
integral secondary current is g,, where

By yp = (M —M") gy

In the case of two circuits placed side by side and in the same
direction M diminishes as the distance between the ecircuits in-
creases. Hence, the induced current is positive when this distance
is increased and negative when it is diminished.

These are the elementary cases of induced currents described in
Art. 530.

Meckanical Action between the Two Circuits.

583.] Let # be any one of the gcometrical variables on which
the form and relative position of the cireuits depend, the electro-
magnetic force tending to increase z is

X =135 % +.?1.?z%[ + %‘%2 Efl;y

If the motion of the system corresponding to the variation of z
is such that each circuit moves as a rigid body, £ and & will be
independent of , and the equation will be reduced to the form

X=419 % :

Henee, if the primary and sccondary currents are of the same
sign, the force X, which acts between the circuits, will tend to
move them so as to increase M.

If the circuits are placed side by side, and the currents flow in
the same direction, M will be increased by their being brought
nearer together. Hence the force X 1s in this case an attraction.

584.] The whole of the phenomena of the mutual action of two
circuits, whother the induection of currents or the mechanieal force
between them, depend on the quantity 37, which we have called the
coefficient of mutual induction. The method of calculating this
quantity from the geometrical relations of the circuits is given in
Art. 524, but in the investigations of the next chapter we shall not
assume a knowledge of the mathematical form of this quantity.
‘We shall consider it as deduced from experiments on induction,
as, for instance, by observing the integral current when the
secondary circuit is suddenly moved from a given position to an
infinite distance, or to any position in which we know that M =0.
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CHAPTER VIII.

EXPLORATION OF THE F¥IELD BY MEANS OF THE SECONDARY
CIRCUIT.

585.] We have proved in Arts. 582, 583, 584 that the clectro-
magnetic action between the primary and the secondary circuit
depends on the quantity denoted by 24, which is a function of the
form and relative position of the two circuits.

Although this quantity M is in fact the same as the potential
of the two circuits, the mathematical form and properties of which
we deduced in Arts. 423, 492, 521, 539 fromn magnetic and electro-
magnetic phenomena, we shall here make no reference to these
results, but begin again from a new foundation, without any
assumptions except those of the dynamical theory as stated in
Chapter VII,

The electrokinetic momentum of the secondary circuit consists
of two parts (Art. 578), one, M%;, depending on the primary current
%, while the other, Vé,, depends on the secondary current 4,, We
are now to investigate the first of these parts, which we shall
denote by p, where p = M, (1)

‘We shall also suppose the primary circuit fixed, and the primary
current constant. The quantity p, the electrokinetic momentum of
the secondary circuit, will in this case depend only on the form
and position of the secondary circuit, so that if any closed curve
be taken for the secondary circuit, and if the direction along this
carve, which is to be reckoned positive, be chosen, the value of p
for this closed curve is determinate. If the opposite direction along
the curve had been chosen as the positive direction, the sign of
the quantity » would have been reversed.

586.] Since the quantity p depends on the form and position
of the circuit, we may suppose that each portion of the circuit

P 2
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contributes something to the value of g, and that the part con-
tributed by cach portion of the circuit depends on the form and
position of that portion only, and not on the position of other parts
of the cirenit,

This assumption is legitimate, because we are not now considering
a current, the parts of which may, and indeed do, act on one an-
other, but a rocre eirewzt, that is, a closed curve along which a
current may flow, and this Is a purely geometrical figure, the parts
of which cannot be conceived to have any physical action on each
other.

We may therefore assume that the part contributed by the
element ds of the circuit is Jds, where J 1s a quantity depending
on the position and direction of the element ds. Hence, the value
of p may be expressed as a line-integral

P ;:/J(Zs, (2)

where the integration 1s to be extended once round the circuit.

587.] We have next to determine the form of the quantity J.

In the first place, if d¢ is reversed in direction, J is reversed in
A sign. Hence, if two circuits ABCE and 4ECD
EL H’- 1l have the arc 4A£C common, b}lt r.eckoned in
. ' opposite directions in the two circuits, the sum
c of the values of p for the two circuits ABCE
Fig. 85. and AFCD will be equal to the value of p for

the circuit 4 BCD, which is made up of the two circuits.

For the parts of the line-integral depending on the arc AEC are
equal but of opposite sign in the two partial circuits, so that they
destroy each other when the sum is taken, leaving only those parts of
the line-integral which depend on the external boundary of 4B8CD.

In the same way we muy shew that if a surfuce bounded by a
closed curve be divided into any number of parts, and if the
boundary of each of these parts be considered as a eircuit, the
positive direction round every circuit being the same as that round
the external closed curve, then the value of p for the closed curve is
equal to the sum of the values of p for all the circuits. See Art. 483.

588.] Let us now consider a portion of a surface, the dimeusions
of which are so small with respect to the principal radii of curvature
of the surface that the variation of the direction of the normal
within this portion may be neglected. We shall also suppose that
if any very small circuit be carried parallel to itself from one part
of this surface to another, the value of p for the small circuit is
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not sensibly altered. This will evidently be the case if the dimen-
sions of the portion of surface are small enough compared with
its distance from the primary circuit.

If any closed curve be drawn on ihis portion of the surfuce, the
value of p will be proportional fo its areu.

For the areas of any two circuits may be divided inte small
elements all of the same dimensions, and having the same value
of p. The areas of the two circuits are as the numbers of these
elements which they contain, and the values of p for the two circuits
are also in the same proportion.

Hence, the value of 7 for the eircuil which bounds any element
d8 of a surface is of the form Idas,
where [ is a quantity depending on the position of 48 and on the
direction of its normal. We have therefore a new expression for p,

P =/fIdS, (3)

where the double integral is extended over any surface bounded by
the circuit.

589.] Let 4BCD be a circuit, of which AC is an elementary
portion, so small that 1t may be considered stralght —
Let 4PB and CQZB be small equal areas in the
same plane, then the value of p will be the same P<A
for the small cireuits APB and CQ B, or . iq o

p(4PB) = p (CQB).
Hence  p(APBQRCD) = p(4BQCI) 4+ p(APR),
= p(4BQCD)+ p(CEB),
— p(4BCD), Fig. 36.
or the value of p is not altered by the substitution of the crocked
line APQC for the straight line 4C, provided the area of the circuit
1s not sensibly altered. This, in fuet, is the principle established
by Ampéere’s second experiment (Art. 506), in which a crooked
portion of a circuit is shewn to be equivalent to a straight portion
provided no part of the crooked portion is at a sensible distance
from the straight portion.

If therefore we substitute for the element ds three small elements,
dz, dy, and dz, drawn in succession, so as to form a continuous
path from the beginning to the end of the element ds, and if
Fdz, Gdy, and Hdez denote the elements of the line-integral cor-
responding to dz, dy, and dz respectively, then

Jds = Fdo4 Gdy+ Hde. (4)
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590.] We are now able to determine the mode in which the
quantity J depends on the dircetion of the element ds. Tor,

by (4

v T=T% Y g% )

This is the expression for the resolved part, in the direction of ds,
of a vector, the components of which, resolved in the directions of
the axes of @, 7, and 2, are #, G, and /] respectively.

If this vector be denoted by 2, and the vector from the origin
to a point of the circuit by p, the element of the circuit will be dp,
and the qualernion expression for J will be

— S8 dp.
‘We may now write equation (2) in the form
dz d/
p=/(pd§ Y 1% as, (6)
orp:—fSQ[dp. (7)

The vector 9 and its constitnents ¥, @, 4/ depend on the position
of ds in the field, and not on the direction in which it is drawn.
They are therefore functions of #, 7, 2z, the coordinates of ds, and
not of £, m, #, its direction-cosines.

The vector ¥ represents in direction and magnitude the time-
integral of the electromotive force which a particle placed at the
point (7, 7, 2) would experience if the primary current were sud-
denly stopped. We shall therefore call it the Electrokinetic Mo-
mentum a? the point (z, y, z). It is identical with the quantity
which we investigated in Art. 405 under the name of the vector-
potential of magnetic induction.

The electrokinetic momentum of any finite line or eircuit is the
line-integral, extended along the line or ecircuit, of the resolved
part of the electrokinetic momentum at each point of the same.

591.7 Let us next determine the value of
p for the elementary rectangle ABCD, of
c which the sides are dy and dz, the positive
sl o B direction being from the direction of the
Y axis of  to that of 2.
A Let the coordinates of O, the centre of
gravity of the element, be #,, 7, 2,, and let
Gy, I, be the values of @ and of A at this
point.
The coordinates of 4, the middle point of the first side of the

z

Fig. 37.
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1 . .
rectangle, are y, and Z—y dz. 'The corresponding value of G is

1dG
G'_G-—~(ild+&c (8)
and the part of the value of p which arises from the side 4 is

imatel
approximately Gydy— ~ ﬁfl‘/ dz. ()

Similarly, for B, H,dz+ - d—@[ly dz.

For C, IO(ZJ——L(]_/IZZ
For D, — I, de+ = 1 @d dz.
2 dy
Adding these four quantities, we find the value of p for the
rectangle dH 46
( - )dy de. (10)
If we now assume three new quantltles, @, b, ¢, such that
o= 4G N
T dy T e’ l
ar 4
b= dz ~ do’ (4)
_aq_ar |
C T dx T dy

and consider these as the constituents of a new vector B, then, by
Theorem IV, Art. 24, we may express the line-integral of U round
any circuit in the form of the surface-integral of B over a surface
bounded by the circuit, thus

p = f(ﬁ’ +(*“7! v H

or p:fT%[cossds:f/TEBcosndS, (12)

where € 1s the angle between U and ds, and n that between B and
the normal to 48, whose direction-cosines are /, m, #, and 7, 7B
denote the numerical values of ¥ and B.

Comparing this result with equation (3), it is evident that the
quantity [ in that equation is equal to B cosn, or the resolved part
of B normal to 48.

592.] We have already seen (Arts. 490, 541) that, according to
Faraday’s theory, the phenomena of electromagnetic force and

(Zi)d.s' __f (latmb+ne)ds, (11)
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induction in a eircuit depend on the variation of the number of
lines of magnetic induction which pass through the circuit. Now
the number of these lines is expressed mathematically by the
surface-integral of the magmnetie induction throngh any surface
bounded by the circuit. Hence, we must regard the vector B
and its ecomponents a, 4, ¢ as representing what we are already
acquainted with as the magnetic induction and its components.

In the present investigation we propose to deduce the properties
of this vector from the dynamical principles stated in the last
chapter, with as few appeals to experiment as possible.

In identifying this vector, which has appeared as the result of
a mathematical investigation, with the magnetic induction, the
properties of which we learned from experiments on magnets, we
do not depart from this method, for we introduce no new fact into
the theory, we only give a name to a mathematical quantity, and
the propriety of so doing is to be judged by the agreement of the
relations of the mathematical quantity with those of the physical
quantity indicated by the name.

The vector B, since it occurs in a surface-integral, belongs
evidently to the category of fluxes described in Art. 13, The
veetor 2, on the other hand, belongs to the category of forees,
since it appears in a line-integral.

593.] We must here recall to mind the conventions about positive
and negative quantities and directions, some of which were stated
in Art. 23. We adopt the right-handed system of axes, so that if
a right-handed screw is placed in the direction of the axis of =z,
and a nut on this secrew is turned in the positive direction of
rotation, that is, from the direction of y to that of 2, it will move
along the screw in the positive direction of 2.

We also consider vitreous electricity and austral magnetism as
positive. The positive direction of an electric current, or of a line
of electric mnduction, 1s the direction in which positive electricity
moves or tends to move, and the positive direction of a line of
magnetic induetion is the direction in which a compass needle
points with the end which turns to the north. See Fig. 24, Art.
498, and Fig. 25, Art. 501.

The student is recommended to seleet whatever method appears
to him most effectual in order to fix these conventions securely in
his memory, for it is far more difficult to remember a rule which
determines in which of two previously indifferent ways a statement
is to be made, than a rule which selects one way out of many.
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594.] We have next to dednce from dynamical principles the
expressions for the electromagnetic force acting on a conductor
carrying an electric current through the magnetic field, and for
the electromotive force acting on the electrieity within a hody
moving in the magnetic field. The mathematical method which
we shall adopt may be compared with the experimental method
used by Faraday * in exploring the field by means of a wire, and
with what we have already done at Art. 490, by a method founded
on experiments. What we have now 1o do is to determine the
effect on the valuec of p, the electrokinetic momentum of the
secondary circuit, due to given alterations of the form of that
eircuit,

Let 44', BB be two parallel straight conductors connected by
the conducting arc C, which may be of any form, and by a straight

Fig. 38.

conductor 485, which is capable of sliding parallel to itself along
the conducting rails 44" and BE.

Let the circuit thus formed be considered as the secondary cir-
cuit, and let the direction 4BC be assumed as the positive direction
round it.

Let the sliding piece move parallel to itself from the position 4.8
to the position 4’8, We have to determine the variation of p, the
electrokinetic momentum of the cireuit, due to this displacement
of the sliding piece.

The secondary circuit is changed from 4ABC to 4"8°C, hence, by
Art. 587, (4 BC)— p(4BC) = p(44'B B). (13)

‘We have therefore to determine the value of p for the parallel-
ogram AA’B’B. If this parallelogram is so small that we may
negleet the variations of the direction and magnitude of the mag-

netic induction at different points of its plane, the value of p is,
by Art. 591, B cos n. 44’ B’ B, where B is the magnetic induction,

* FErp. Res., 3082, 3087, 8113.
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and 5 the angle which it makes with the positive direction of the
normal to the parallelogram 44" B’ B.

We may represent the result geometrically by the volume of the
parallelepiped, whose base is the parallelogram 44"8°F, and one of
whose edges is the line 43/, which represents in direction and
magnitude the magnetic induction B. If the parallelogram is in
the plane of the paper, and if 43 is drawn upwards from the paper,
the volume of the parallelepiped is to be taken positively, or more
generally, if the directions of the circuit 48, of the magnetic in-
duction 4M, and of the displacement 44’, form a right-handed
system when tuken in this eyclical order.

The volume of this parallelepiped represents the increment of
the value of p for the secondary circuit due to the displacement
of the sliding piece from 48 to 4"’

Electromotive Force acting on the Sliding Piece.

595.] The electromotive force produced in the secondary circuit

by the motion of the sliding piece is, by Art. 579,
dap
B=-2. (14)

If we suppose 44" to be the displacement in unit of time, then
A4’ will represent the velocity, and the parallelepiped will represent
dp
dt’
negative direction 5 A.

Hence, the electromotive force acting on the sliding piece 4B,
in consequence of its motion through the magnetic field, is repre-
sented by the volume of the parallelepiped, whose edges represent
in direction and magnitude—the velocity, the magnetic induction,
and the sliding piece itself, and is positive when these three direc-

and therefore, by equation (14), the electromotive force in the

tions are in right-handed eyelical order.

Electromagnetic Force acting on the Sliding Piece.

596.] Let 4, denote the current in the secondary circuit in the
positive direction 48C, then the work done by the electromagnetic
force on 4B while it slides from the position 4B to the position
A'B is (M'—M)i i,, where M and M’ are the values of #, in
the initial and final positions of 4B. But (M —M)i, is equal
to " — p, and this is represented by the volume of the parallelepiped
on AB, AM, and A4". Henee, if we draw a line parallel to 48
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to represent the quantity 4B .i,, the parallelepiped contained by
this line, by 4M, the magnetic induction, and by 4.4, the displace-
ment, will represent the work done during this displacement.

For a given distance of displacement this will be greatest when
the displacement is perpendicular to the parallelogram whose sides
are AB and AM. The electromagnetic force is therefore represented
by the area of the parallelogram on A8 and AM multiplied by ¢,
and is in the direction of the normal to this parallelogram, drawn so
that 4B, AM, and the normal are in right-handed cyelical order.

Lour Definitions of a Line of Magnetic Induction.

597.71 If the direction 4A4’, in which the motion of the sliding
piece takes place, coincides with 4}, the direction of the magnetic
induction, the motion of the sliding piece will not call electromotive
force into action, whatever be the direction of 4B, and if 4B carries
an electric current there will be no tendency to slide along 44",

Again, if 4B, the sliding piece, coinecides in direction with 47,
the direction of magnetic induction, there will be no electromotive
force called into action by any motion of 45, and a current through
AB will not cause 475 to be acted on by mechanical force.

We may therefore define a line of magnetic induction in four
different ways. It is a line such that—

(1) If a conductor be moved along it parallel to itself it will
experience no electromotive force.

(2) If a conductor carrying a current be free to move along a
line of magnetic induction it will experience no tendency to do so.

(3) If a linear conductor coincide in direction with a line of
magnetic Induction, and be moved parallel to itself in any direction,
it will expericnce no electromotive foree in the direction of its
length.,

(4) If a linear conductor carrying an electric current coincide
in direction with a line of magnetic induction it will not experience
any mechanical force.

General Lquations of Electromotive Force.
598.] We have seen that Z, the electromotive force due to in-

. . ' o d
duction acting on the secondary cireuit, 1s equal to — —(7?, where

dx dy dz
— A - ) 1
s _f(F(ls + Gds +II(ZS)(ZS (1)
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220 ELECTROMAGNETIC FIELD, [598.

To determine the value of #, let us differentiate the quantity
under the integral sign with respect to ¢, remembering that if the
secondary circult is in motion, #, 7, and z are functions of the time.
We obtain

dF de dGdy dHde
f(dt st dds T dt a)®

_f(dF dr | dGdy dlldz\ dz

dras Tavas Vdo ad ae®

f dF dz " ﬁ dy dlldz\dy
@ T s Ty a) e

f dF dz ﬁdy all dz
I mtTmat e ds)dt

d%y d*z
_/( ds (ll + Gdsd[ +I[(l7ﬂ) ds. 2)

Now consider the second term of the integral and substitute

from equations (A), Art. 591, the values of — a nd if This term

then becomes,

f rl/ (Zz (ZF de  dFdy dF dz, de
- ( cls dxds+@;lg+dz (ls)dz

which we may write

(7/ a’F dz
—f( b s %(Zs.

Treating the third and fourth terms in the same way, and col-

de dy dz .
ds® s and e remembering that

ar (lx d*z
— 3
f(ds dt dsdt)d F ®)
and therefore that the infegral, when taken round the closed

curve, vanishes,
dz ar dz
b= f ( dt % dé) ds

dz de d@ d/
+ i - “

lecting the terms in

dt ~ dtl ds
dz (Z y aIl. rlz
f ¢ P Tl TP AL (4)
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We may write this expression in the form
dz s dz
5= [(Ey Q- ) )
dy dz dF d¥
Cac T a T @t T dw’
dz de dG d¥ | Equations of

— ) — —f - - O omoti B
Q “ dﬁ cl]ﬁ dt dy ’ J L]e;grce.tve ( )

where P =

dz dy dH d¥
B=b =y~ 0

The terms involving the new quantity ¥ are introduced for the
sake of giving generality to the expressions for P, @, £. They
disappear from the integral when extended round the closed circuit.
The quantity ¥ is therefore indeterminate as far as regards the
problem now before us, in which the total electromotive force round
the circuit is to be determined. We shall find, however, that when
we know all the eircumstances of the problem, we can assign a
definite value to ¥, and that it represents, according to a certain
definition, the electric potential at the point z, 7, 2

The quantity under the integral sign in equation (5) represents
the electromotive foree acting on the element &s of the circuit.

If we denote by 7@, the numerieal value of the resultant of P,
@, and Z, and by e, the angle between the direction of this re-
sultant and that of the clement ds, we may write equation (5),

E:/T@coseds. (6)

The vector € is the electromotive force af the moving element
ds. Its direction and magnitude depend on the position and
motion of ds, and on the variation of the magnetic field, but not
on the direction of ds. Hence we may now disregard the eircum-
stance that s forms part of a circuit, and consider it simply as a
portion of a moving body, acted on by the electromotive force €.
The electromotive force at a point has already been defined in
Art. 68. It is also called the resultant electrical force, being the
force which would be experienced by a unit of positive electricity
placed at that point. We have now obtained the most general
value of ihis quantity in the case of a body moving in a magnetic
field due to a variable electric system.

If the body 1s a conductor, the electromotive force will produce a
current; if it is a dielectrie, the electromotive foree will produce
only electric displacement.
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The electromotive force at a point, or on a particle, must le
carcfully distinguished from the electromotive force along an arc
of a curve, the latter quantity being the line-integral of the former.
See Art. 69,

599.] The electromotive force, the components of which are
defined by equations (B), depends on three circumstances. The first
of these is the motion of the particle through the magnetic field.
The part of the force depending on this motion is expressed by the
first two terms on the right of each equation. It depends on the
velocity of the particle transverse to the lines of magnetic induction.
If & is a vector representing the velocity, and B another repre-
senting the magnetic induction, then if &, is the part of the elec-
tromotive force depending on the motion,

G =789, )
or, the electromotive force is the vector part of the product of the
magnetic induction multiplied by the velocity, that is to say, the
magnitude of the electromotive force is represented by the area
of the parallelogram, whose sides represent the velocity and the
magnetic induction, and its direction is the normal to this parallel-
ogram, drawn so that the velocity, the magnetic induction, and the
electromotive foree are in right-handed eyclical order.

The third term in each of the equations (B) depends on the fime-
variation of the magnetic ficld. This may be due either to the
time-variation of the electric eurrent in the primary circuit, or to
motion of the primary circuit. Let @, be the part of the electro-
motive force which depends on these terms. Its components are

ar aG arl
—w Ta ™ T
aA
and these are the components of the vector, — T 9. Hence,

¢, =—9l. (8)

The last term of each equation (B) is due to the variation of the
function ¥ in different parts of the field. We may write the third
part of the electromotive force, which is due to this canse,

E, =— V& (9)

The electromotive force, as defined by equations (B), may therefore
be written in the quaternion form,

C=V7.EGB-9— VY, (10)
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On the Modification of the Egquations of Electromotive Force when the
Azes to which they are referred are moving in Space.

600.] Let #/, 3, 2 be the coordinates of a point referred to a
system of rectangular axes moving in space, and let 2, 7, 2 be the
coordinates of the same point referred to fixed axes.

Let the components of the velocity of the origin of the moving
system be %, v, w, and those of its angular velocity w, w,, w,
referred to the fixed system of axes, and let us choose the fixed
axes so as to coincide at the given instant with the moving ones,
then the only quantities which will be different for the two systems
of axes will be those differentiated with respect to the time. If

57 denotes a component veloeity of a point moving in rigid con-

’

@ and

dt dt
point, having the same instantaneous position, referred to the fixed
and the moving axes respectively, then
dr 3z di’
— = — 1
@~ st a ()
with similar equations for the other components,
By the theory of the motion of a body of invariable form,

nexion with the moving axes, and that of any moving

Sz
57 = 4tet—os, 1
oy .
5y = Ut esF— oz, f (2)
gz
6—25 =w+w1y——m2.’v.J
Since # is a component of a directed quantity parallel to z,
if %ﬁ? Ve the value of % referred to the moving axes,
dF dFde dFby dFée dF
= = L T (e — .
= dwn T et st ety (3)
Substituting for {é—F and %1 their values as deduced {rom the
y 2
equations (A) of magnetic induction, and remembering that, by (2),
d dx d dy d 3z
& or_ %y _ 207 e, 4
do st dmdiT ® dz ¥t 2 ()

dF’ _ dFiz (,d bx  dGdy ig‘)y_i_czg?z 4 bz
T dwel T anni Tt T gy st T o do vt
T Tlht
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If we now put
P _y=F§?+Gay+Haﬁ, (6)
Y, 8¢
dF __av by e dF
P - . 7
= it (7)

The equation for P, the component of the electromotive force
parallel to «, is, by (B),
(l y dz dF d¥
—_ R, 8
P=cy=u~ % d’ ®)
referred to the fixed axes. Substituting the values of the quanti-
ties as referred to the moving axes, we have

ay’ 2 dF d(F+ )
P=c =t == g

for the value of P referred to the moving axes.

601.7 It appears from this that the electromotive force is ex-
pressed by a formula of the same type, whether the motions of the
conductors be referred to fixed axes or to axes moving in space, the
only difference between the formulae being that in the case of
moving axes the electric potential ¥ must be changed into ¥ +¥,

In all cases in which a current is produced in a conducting cir-

(9)

cuit, the electromotive force is the line-integral
d
_f(p e Rdz) ds, (10)

taken round the curve. The value of ¥ disappears from this
integral, so that the introduction of ¥ has no influence on its
value. In all phenomena, therefore, relating to closed circuits and
the currents in them, it is indiffcrent whether the axes to which we
refer the system be at rest or in motion. See Art. 668.

On the Electromagnetic Force acling on a Conductor whick carries
an Electric Current through a Magnetic Field.

602.] We have seen in the general investigation, Art. 583, that if
«, Is one of the variables which determine the position and form of
the secondary circuit, and if X is the force acting on the secondary
circuit tending to increase this variable, then

aM . .
X, = Tz, 1y Bye (n
Since 7, is independent of z;, we may write
7
Mij=p= f (]1— ‘y IIlZZ){Za, (2)
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and we have for the value of X,
X =i g f(z””” 6% 4 1%y as ()

Now let us suppose that the displacement consists in moving
every point of the circuit through a distance dx in the direction
of #, 8z being any continuous function of s, so that the different
parts of the circuit move independently of each other, while the
circuit remains continuous and closed.

Also let. X be the lotal force in the direction of @ acting on
the part of the circuit from s = 0 to s = s, then the part corre-

sponding to the element ds will be %;g ds. 'We shall then bave the

following expression for the work done by the force during the

displacement,
axX . dy , de
fﬁ drds = 1, dax( ds G678—+11%)6mds, (4)

where the integration is to be extended round the closed curve,
remembering that 3z is an arbitrary function of &, 'We may there-
fore perform the differentiation with respect to 32 in the same
way that we diffcrentiated with respect to £ in Art. 598, remem-

bering that . 7 d
JwE oy _ _as x
doa = gog = O md g5, =0 (5)

We thus find

d dz d
va ﬁx ds = zzf(c y_ ds) Sz ds +/2’Zs (F dx) ds. (6)

The last term vanishes when the integration is extended round
the closed curve, and since the equation must hold for all forms
of the function 8z, we must have

=D Ty, (7)

an equation which gives the force parallel to # on any element of
the circuit. The forces parallel to y and z are

ZY l

P ®
az

dT‘Z ( (]:r) %)

The resultant force on the element is given in direction and mag-
nitude by the quaternion expression 4, ¥ dpB, where 4, is the
numerical measure of the current, aud dp and B are vectors

VOL. TL. Q
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representing the element of the circuit and the magnetic in-
duction, and the multiplication is to be understood in the Hamil-
tonian sense.

603.] If the conductor is to be treated not as a line but as a
body, we must express the force on the element of length, and the
current through the complete section, in terms of symbols denoting
the force per unit of volume, and the current per unit of area.

Let X, ¥, Z now represent the components of the force referred to
unit of volume, and #, », w those of the current referred to unit of
area. Then, if § represents the section of the conductor, which we
shall ,suppose small, the volume of the element ds will be §ds, and

U - -
ho=a Hence, equation (7) will become
X—j;ﬁ = Swe—wb), (10)
OI: . X = ve —wh. (Equations of
Slmllarly ¥ = wa — uc, Elect‘rumagnetiu (C)
and 7 = ub — va. Vorce.)

Here X, ¥, Z are the components of the electromagnetic force on
an clement of a conductor divided by the volume of that element ;
#, v, w are the components of the electriec current through the
element referred to unit of area, and a, é, ¢ are the components
of the magnetic induction at the element, which are also referred
to unit of area.

If the vector §§ represents in magnitude and direction the force
acting on unit of volume of the conductor, and if € represents the
electric current flowing through i,

§=7.¢8. (11)
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CHAPTER IX.

GENERAL EQUATIONS OF THE ELECTROMAGNETIC FIELD.

604.] Ix our theoretical discussion of electrodynamies we began
by assuming that a system of eircuits carrying electric currents
is a dynamical system, in which the currents may be regarded as
velocities, and in which the coordinates corresponding to these
veloeities do not themselves appear in the equations. It follows
from this that the kinetic energy of the system, so far as it depends
on the currents, is a homogeneous quadratic function of the currents,
in which the coefficients depend only on the form and relative
position of the circuits. Assuming these coeflicients to be known,
by experiment or otherwise, we deduced, by purely dynamical rea-
soning, the laws of the induction of currents, and of electromagnetic
attraction. In this investigation we introduced the conceptions
of the electrokinetic energy of a system of currents, of the electro-
magnetic momentum of a circuit, and of the mutual potential of
two circuits.

We then proceeded to explore the field by means of various con-
figurations of the secondary ecircuit, and were thus led to the
conception of a vector 2, having a determinate magnitude and
direction at any given point of the field. We called this vector the
electromagnetic momentum at that point. This quantity may be
considered as the time-integral of the electromotive force which
would be, produced at that point by the sudden removal of all the
currents from the field. It is identical with the quantity already
investigated in Art. 405 as the vector-potential of magnetic in-
duction. Its components parallel to z, 7, and 2z are F, &, and A.
The electromagnetic momentum of a ecircuit is the line-integral
of 9 round the eircuit.

We then, by means of Theorem 1V, Art. 24, transformed the

Q 2
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line-integral of 9 into the surfice-integral of another vector, B,
whose components are a, 8, ¢, and we found that the phenomena
of induction due to motion of a conductor, and those of electro-
magnetic force can be expressed in terms of B. We guve to B
the name of the Magnetie induction, sinee its propertics are iden-
tical with those of the lines of magnetic induction as investigated
by Faraday. .

We also established three sots of equations: the first set, (A),
are those of magnetic induction, expressing it in terms of the elec-
tromagnetic momentum. The second set, (B), are those of electro-
motive force, expressing it in terms of the motion of the conductor
across the lines of magnetic induction, and of the rate of variation
of the electromagnetic momentum. The third set, (C), are the
equations of electromagnetic force, expressing it in terms of the
current and the magnetic induction.

The corrent in all these cases is to be understood ag the actual
current, which includes not only the current of conduction, but the
current due to variation of the electric displacement.

The magnetic induetion B is the quantity which we have already
considered in Art. 400. In an unmagnetized body it is identical
with the force on a unit magnetic pole, but if the body is mag-
netized, either permanently or by induction, it is the force which
would be exerted on a unit pole, if placed in a narrow crevasse in
the body, the walls of which are perpendicular to the direction of
magnetization. The components of B are «, &, c.

It follows from the equations (A), by which &, &, ¢ are defined,
that da db de

&ty T ET

This was shewn at Art. 403 to be a property of the magnetic
induction.

605.7 We have defined the magnetic force within a magnet, as
distinguished from the magnetic induction, to be the force on a
unit pole placed in a narrow crevasse cut parallel to the direction of
magnetization. This quantity is denoted by 9, and its components
by a, B, y- See Art. 398.

If § is the intensity of magnetization, and 4, B, C its com-
ponents, then, by Art, 400,

a=at4m4d,
b=p8+47B5, (Equations of Magnetization.) (D)
¢ =vy+ 47 C.
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We may call these the equations of magnetization, and they
indicate that in the electromagnetic system the magnetic induction
B, considered as a vector, is the sum, in the Hamiltonian sense, of
two vectors, the magnetic force &, and the magnetization J multi-
plied by 4 =, or B=H+473.

In certain substances, the magnetization depends on the magnetic
force, and this is expressed by the system of equations of induced
magnetism given at Arts. 426 and 435.

606.] Up to this point of our investigation we have deduced
everything from purely dynamical considerations, without any
reference to quantitative experiments in electricity or magnetism.
The only use we have made of experimental knowledge is to re-
cognise, in the abstract quantities deduced from the theory, the
concrete quantities discovered by experiment, and *to denote them
by names which indicate their physical relations rather than their
mathematical generation.

In this way we have pointed out the existence of the electro-
maguetic momentum 9 as a vector whose direction and magnitude
vary from one part of space to another, and from this we have
deduced, by a mathematical process, the magnetic induction, B, as
a derived vector. We have not, however, obtained any data for
determining either 9 or B from the distribution of currents in the
field. For this purpose we must find the mathematical connexion
between these quantities and the currents.

We begin by admitting the existence of permanent magnets,
the mutual action of which satisfies the principle of the conservation
of energy. We make no assumption with respect to the laws of
magnetic foree except that which follows from this prineiple,
namely, that the force acting on a magnetic pole must be capable
of being derived from a potential.

‘We then observe the action between currents and magnets, and
we find that a current acts on a magnet in a manner apparently the
same as another magnet would act if its strength, form, and position
were properly adjusted, and that the magnet acts on the current
in the same way as another current. These observations need not
be supposed to be accompanied with actual measurements of the
forces. They are not therefore to be considered as furnishing
numerical data, but are useful only in suggesting questions for
our consideration.

The question these observations suggest is, whether the magnetic
field produced by electric currents, as it is similar to that produced
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by permanent magnets in many respects, resembles it also in being
related to a potential ?

The evidence that an electrie cireuit produces, in the space sur-
rounding it, magnetic effects preciscly the same as those produced
by a magnetic shell bounded by the circuit, has been stated in
Arts. 482-485.

We know #that in the case of the magnetic shell there is a
potential, which has a determinate value for all poinls outside the
substance of the shell, but that the values of the potential at two
neighbouring points, on opposite sides of the shell, differ by a finite
quantity.

If the magnetic field in the neighbourhood of an electric current
resembles that in the neighbourhood of a magnetic shell, the
magnetic polential, as found by a line-integration of the magnetic
force, will be the same for any two lines of integration, provided
one of these lines can be transformed into the other by continuous
motion without cutting the electric current.

If, however, one line of integration cannot be transformed into
the other without cutting the current, the line-integral of the
magnetic force along the one line will differ from that along the
other by a quantity depending on the strength of the current. The
magnetic potential due to an electric current is therefore a function
having an infinite series of values with a common difference, the
particular value depending on the course of the line of integration.
‘Within the substance of the conductor, there is no such thing as
a magnetic potential.

607.] Assuming that the magnetic action of a current has a
magnetic potential of this kind, we proceed to express this result
mathematically.

In the first place, the line-integral of the magnetic force round
any closed curve is zero, provided the closed curve does not surround
the electric current.

In the next place, if the carrent passes once, and only once,
through the closed curve in the positive direction, the line-integral
has a determinate value, which may be used as a measure of the
strength of the current. For if the closed curve alters its form
in any continucus manner without cutting the current, the line-
integral will remain the same.

In electromagnetic measure, the line-integral of the magnetic
force round a closed curve is numerically equal to the current
through the closed curve multiplied by 4 4.
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If we take for the closed curve the parallelogram whose sides
are dy and dz, the line-integral of the magnetic force round the
parallelogram is d d

(@l’ ~ By,
and if #, v, w are the componenté of the flow of electricity, the
current through the parallelogram is
% dy dz.
Multiplying this by 4=, and equating the result to the line-

integral, we obtain the equation

d dB 7

Ay = d; —_ (Zé ]

with the similar equations
Equati f

4y = @ —_ @ ; r Elgct%}t:aé(l)lgrse?lts.) (E)
de  dz
d8  du

drw = % —_ @’ ]

which determine the magnitude and direction of the electric currents
when the magnetic force at every point is given.

When there is no current, these equations are equivalent to the
condition that edz+Bdy+yde =—DQ,
or that the magnetic force is derivable from a magnetic potential
in all points of the ficld where there are no currents,

By differentiating the equations (E) with respect to #, ¥, and 2
respectively, and adding the results, we obtain the equation

duw dv  dw

PP T
which indicates that the current whose components are #, v, w is
subject to the condition of motion of an incompressible fluid, and
that it must necessarily flow in closed circuits.

This equation is true only if we take #, v, and % as the com-
ponents of that electric flow which is due to the variation of electric
displacement as well as to true conduction.

We have very little experimental evidence relating to the direct
electromagnetic action of currents due to the variation of clectric

=0,

displacement in dielectrics, but the extreme difficulty of reconciling
the laws of electromagnetism with the existence of electric currents
which are not closed is one reason among many why we must admit
the existence of transient currents due to the variation of displace-
ment. Their importance will be seen when we come to the electro-
magnetic theory of light.
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608.] We have now determined the relations of the prineipal
quantities concerned in the phenomena discovered by Orsted, Am-
peére, and Faraday. To connect these with the phenomena deseribed
in the former parts of this treatise, some additional relations are
necessary.

When electromotive foree acls on a material body, it produces
In it two electrical effeets, called by Faraday Induction and Con-
duction, the first being most conspicuous in dielectrics, and the
second in conductors.

In this treatise, static electric induction is measured by what we
have called the electric displacement, a directed quantity or vector
which we have denoted by ©, and its components by 7, g, 4.

In isotropic substances, the displacement is in the same direction
as the electromotive force which produces it, and is proportional
to it, at least for small values of this force. This may be expressed
by the equation

Displacement.)

D = ;leK(g’ (Equation of Electric (F)

where K is the dielectric capacity of the substance. See Art. 69.

In substances which are not isotropic, the components £, g, 4 of
the electric displacement © are linear functions of the components
P, Q, B of the electromotive force G.

The form of the equations of electric displacement is similar to
that of the equations of conduction as given in Art. 298.

These relations may be expressed by saying that X is, in isotropic
bodies, a scalar quantity, but in other bodies it 1s a linear and vector
funetion, operating on the vector G.

609.] The other effect of electromotive force is conduction. The
laws of conduction as the result of electromotive force were esta-
blished by Ohm, and are explained in the second part of this
treatise, Art. 241. They may be summed up in the equation

8 = CG, (Equation of Conductivity.) (&)

where & is the intensity of the electromotive force at the point,
& is the density of the current of conduction, the components of
which are p, ¢, 7, and C is the conduectivity of the substance, which,
in the case of isotropic substances, is a simple scalar quantity, but
in other substances becomes a linear and vector function operating
on the vector @ The form of this function is given in Cartesian
coordinates in Art. 298.

610.] One of the chief peculiarities of this treatise is the doctrine
which it asserts, that the true electric current @, that on which the
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electromagnetic phenomena depend, is not the same thing as &, the
current of conduction, but that the time-variation of ®, the electrie
displacement, must be taken into account in estimating the total
movement of electricity, so that we must write,

6 = £4+9D, (Equation of True Currents.) (D)
or, in terms of the components,

a
%= p+ 2{)1
|
v =g+ Zz?’ (H*)
dh
v=rt

611.7 Since both & and © depend on the electromotive force @&,

we muy cxpress the true current @ in terms of the electromotive

foree, thus
6 =(C+ - i {ﬂ)@ @
or, in the case in which € and K are constants,
s 1 . dP
— 1 a9 v *
U—UQ+GK—4Z—3’ l (1
dR
w=CR+ 47 K—Jt_ )

612.] The volume-density of the free electricity at any point
is found from the components of electric displacement by the

equation df dg  dk
P=Us T dy N7 )
613.] The surface-density of electricity is
oc=1lftmgtnk+f +n'y +0'¥, (XK)

where /, m, #n are the direction-cosines of the normal drawn from
the surface into the medium in which /£ ¢, Z are the components of
the displacement, and 7, »’, #” are those of the normal drawn from
the surface into the medium in which they are /7, ¢/, 2.

614.] When the magnetization of the medinm is entirely induced
by the magnetic force acting on it, we may write the equation of
induced magnetization, B = uh, (L)
where p is the coefficient of magnetic permeability, which may
be considered a scalar quantity, or a linear and vector function
operating on §), according as the medium is isotropic or not.
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615.] These may be regarded as the principal relations among
the quantities we have been considering. They may be combined
80 as to eliminate some of these quantities, but our object at present
1 not to obtain compactness in the mathematical formulae, but
to express every relation of which we have any knowledge. To
eliminate a quantity which expresses a useful idea would be rather
a loss than a gain in this stage of our enquiry.

There is one result, however, which we may obtain by combining
equations (A) and (E), and which is of very great importance.

If we suppose that no magnets exist in the field except in the
form of electrie circuits, the distinction which we have hitherto
maintained between the magnetic foree and the magnetic induction
vanishes, because 1t 1s only in magnetized matter that these quan-
tities differ from each other.

According to Ampére’s hypothesis, which will be explained in
Art. 833, the properties of what we call magnetized matter are due
to molecular electric circuits, so that it is only when we regard the
substance in large masses that our theory of magnetization is
applicable, and if our mathematical methods are supposed capable
of taking account of what goes on within the individual molecules,
they will discover nothing but electric circuits, and we shall find
the magnetie force and the magnetic induction everywhere identical.
In order, however, to be able to make use of the electrostatic or of
the electromagnetic system of measurement at pleasure we shall
retain the coeflicient p, remembering that its value is unity in the
electromagnetic system.

616.] The components of the magnetic induction are by equa-
tions (A), Art. 591, o adH dG’ ]

dy ~ dz
b — al' dH
=5 "%
_dG dF
c=_ o
The components of the electric current are by equations (E),
Art. 607, dy dB A
dmu = @ — a—z‘) }
_da dy
d7v = zz— — EZW ’
_dB da
YTV S0 T dy
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According to our hypothesis g, 4, ¢ are identical with pa, #B; by
respectively. We therefore obtain

. . d: @G d2F d*F 40 (1)
TR = Grdy T B T 4R T deds
. dF 4G  aH )
If we write J—85+@+EZ£’ (2)
a2 a2 a2
und *® 2 —_ (% L~ =Y, 3
and ve= (dmz T dy? T dzz) )

we may write equation (1),
tmpu = an + v2F.

Similatly, trpy = EZ -y )
4dmuw= Z—;f + 2.

If we write  F” = lff 2w dyde, )
P r '
Q= &// gdxdydz, L (5)
= %f/f?dm]ydz, J
X=%rf/f—i—dxdydz, (6)

where r is the distance of the given point from the element 2y 2,
and the integrations are to be extended over all space, then

ax

nJ ’ AN
F=F T dr
;. 2X
H=H+ 2.8
dz

The quantity x disappears from the equations (A), and it is not
related to any physical phenomenon. If we suppose it to be zero
everywhere, J will also be zero everywhere, and equations (5),
omitting the accents, will give the true values of the components

of Y.

* The negative sign is employed here in order to make our expressions consistent
with those in which Quaternions are employed.
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617.] We may therefore adopt, as a definition of &, that it
is the vector-potential of the electric current, standing in the same
relation to the electric current that the scalar potential stands to
the matter of which it is the potential, and obtained by a similar
process of integration, which may be thus described.—

From a given point let a vector be drawn, represenling in mag-
nitude and dircetion a given element of an electric current, divided
by the numerical value of the distance of the element from the
given point. Let this be done for every element of the electric
current. The resultant of all the vectors thus found is the poten-
tial of the whole current. Since the current is a vector quantity,
its potential is also a vector. Sec Art. 422.

‘When the distribution of electric currents is given, there is one,
and only one, distribution of the values of 9, such that ¥ is every-
where finite and continuous, and satisfies the equations

V2P =47u@, §.VA =0,

and vanishes at an infinite distance from the electric system. This
value 1s that given by equations (5), which may be written

ff — dz dy de.

Quaternion Ezpressions for the Llectromagnetic Lquations.

618.] In this treatise we have endeavoured to avoid any process
demanding from the reader a knowledge of the Calculus of Qua-
ternions. At the same time we have not scrupled to introduce the
1dea of a vector when 1t was necessary to do so. When we have
had occasion to denote a vector by a symbol, we have used a
German letter, the number of different vectors heing so great that
Hamilton’s favourite symbols would have been exbausted at once.
‘Whenever therefore, a German letter is used it denotes a Hamil-
tonian vector, and indicates not only its magnitude but its direction.
The constituents of a vector are denoted by Roman or Greek letters.

The principal vectors which we have to consider are :—

S\y(vr::)t(:)lr'of Constituents.
The radius vector of a point.................. p z y z
The electromagnetic momentum at a point A @il
The magnetic induction ...... e B a b e
The (total) electrie current .................. G u v w
The electric displacement ..................... D S g h
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Symbol of

Vector, Counstituents,
The electromotive force ..................... ¢ P QR
The mechaniecal force ........coooviveein ... ] X rz
The velocity of a point........ooooeiiiniinsns Gorp g5 2
The magnetic force ... H a 8 vy
The intensity of magnetization ............ 3 ADBC
The current of econduction .................. At P gr

We have also the following sealar functions :—
The electric potential ¥.
The magnetic potential (where it exists) Q.
The electric density e.
The density of magnetic ¢ matter’ m.

Besides these we have the following quantities, indicating physical
properties of the medium at each point :—

C, the conductivity for electric currents.
K, the dielectric inductive capacity.
p, the magnetic inductive capacity.

These quantities are, in isotropic media, mere scalar functions
of p, but in general they are linear and vector operators on the
vector funetions to which they are applied. X and p are certainly
always sclf-conjugate, and € is probably so also.

619.] The equations (A) of magnetic induction, of which the

first is, A 4@

a = @ -—_ E 3
may now be written B =7vY,
where V is the operator

Py + 4 i
iz t/ dy dz’

and 7 indicates that the vector part of the result of this operation
is to be taken.

Since U is subject to the condition SV U =0, VI is a pure
vector, and the symbol 7 is unnecessary.

The equations (B) of electromotive foree, of which the first is

., dF 4
P=g=by — %
become E=rV@EB-UA—v.
The equations (C) of mechanical force, of which the first is
a¥y a2
X=cv—tbw—e 2 T
become F=VEB—ev¥—uVQ.
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The equations (D) of magnetization, of which the first is
e = a+47Ad,

become B=H+47J.
The equations (E) of electric currents, of which the first is
47U = Ell —_— d——B,
dy  dz
become 4n 8 =VvY.

The equation of the current of conduction is, by Ohm’s Law,
R = CG.
That of electrie displacement is
1
D= 4—7—1_K G.

The equation of the total eurrent, arising from the variation of
the electric displacement as well as from conduction, is

¢ = @+5).

When the magnetization arises from magnetie induection,
B =pudh.

‘We have also, to determine the eleetric volume-density,
e = 8VD,

To determine the magnetic volume-density,
m =38V S.

When the magnetic force can be derived from a potential
H =-va.
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CHAPTER X.

DIMENSIONS OF ELECTRIC UNITS.

620.] Every electromagnetic quantity may be defined with
reference to the fundamental units of Length, Mass, and Time.
If we begin with the definition of the unit of electricity, as given
in Art. 65, we may obtain definitions of the units of every other
electromagnetic quantity, in virtne of the equations into which
they enter along with quantities of electricity. The system of
units thus obtained is called the Electrostatic System.

If, on the other hand, we begin with the definition of the umit
magnetic pole, as given in Art. 374, we obtain a different system
of units of the same set of quantities. This system of units is
not consistent with the former system, and is called the Electro-
magnetic System.

We shall begin by stating those relations between the different
units which are common to both systems, and we shall then form
a table of the dimensions of the units according to each system.

621.] We shall arrange the primary quantities which we have
to consider in pairs. In the first three pairs, the product of the
two quantities in each pair is a quantity of energy or work. In
the second three pairs, the product of each pair is a quantity of
energy referred to unit of volume.

Firsr Taree Paigs.

Flectrostatic Pair.

Symbol.
(1) Quantity of electricity . . . . €
(2) Line-integral of electromotive force or elcc’mc Po-
tential . ; . . . . . . F
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Magnetic Pair.
. . Symbol.
(3) Quantity of free magnetism, or strength of a pole | "4

(4) Magnetic potential . . . . . )

Electrokinetic Patr.
(5) Electrokinetic momentum of a circuit . . .op
(6) Electric current C

SecoNp TureEE PAIRs.

Flectrostatic Pair.

(7) Electrie displacement (measured by surface-density) .
(8) Electromotive force at a point

@Y

Magnetic Pair.
(9) Magnetic induction
(10) Magnetic force

< 63

Electrokinelic Pair.

(11) Intensity of electric current at a point . . . @
(12) Vector potential of electric currents . . |

622.] The following relations exist belween these quantities.

0

. . . *3
Tn the first place, since the dimensions of energy are [ETIT[] , and

—LJT[,Z—], we have the

those of energy referred to unit of volume [
following equations of dimensions:

1M
[e B :[;;;Q]:[;;U]:[_TTJ, (1)

ar
[261=[B5]=[6]= 77 @)
Secondly, since ¢, p and U are the time-integrals of C, L, and @

respectively, e rp 9

= N=1"=1= 3
Le]=[%]=[s]-1 ©)

Thirdly, since Z, ©, and p are the line-integrals of &, &, and ¥

respectively, [ig] _ :%J _ [ﬁ] — (L] (4)

Finally, siuce ¢, C, aud = are the surface-integrals of ®, €, and B

respectively, li;:l _ :g] _ [%l] = [Z7]. 6))
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623.] These fifteen cquations are not independent, and in order
to deduce the dimensions of the twelve units involved, we require
one additional equation. If, however, we take either ¢ or m as an
independent unit, we can deduce the dimensions of the rest in
terms of either of these.

o @ = =[5
o e ~[E-[3]

(3) and (5) [#)=[] = [

@ad 5) [01=[0)=[ 7] =[2p]

o @ =[n] =[2%]
o @ ([
0w <[]
w9 =[]=[2n])
a6 =[] =[]
o @ -[2-[5)

624.] The relations of the first ten of these quantities may be
exhibited by means of the following arrangement :—

e, D, H, Cand Q. I ¢ B, wandp.

mand p, B, E. Cand 0, H, D, e.

The quantities in the first line are derived from e by the same
operations as the corresponding quantities in the second line are
derived from #. Tt will be seen that the order of the quantities
in the first line is exactly the reverse of the order in the second
line. 'The first four of each line have the first symbol in the
numerator. The second four in each line have it in the deno-
minator.

All the relations given above are true whatever system of units
we adopt.

625.] The only systems of any scientific value are the electro-
static and the elcctromagnetic system. The clectrostatic system is

VOL. 1I. R
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founded on the definition of the unit of electricity, Arts. 41, 42,
and may be deduced from the equation

e
@ - ﬁi
which expresses that the resultant force € at any point, due to the

action of a quantity of electricity e at a distance Z, is found by
dividing ¢ by £2. Substituting the equations of dimension (1) and

(8), we find LU Te ml M
)=l [za)=1ae)
whence  [€] = [L3MATY), m=[L*M}],

in the electrostatic system.

The electromagnetic system is founded on a precisely similar
definition of the unit of strength of a magnetic pole, Art. 374,
leading to the equation m

‘g) = 72"
whence l:—e—jl = [}(] ’ [EMJ = [L’L] ,
LT el mT? 12
and [¢] =[2% ﬂﬁ], (] = (L2 MiT],

in the electromagmetic system. From these results we find the
dimensions of the other quantities.

626. ] Table of Dimensions.
Dimensions in
Symbol Electrostatic Electromagnetic
Rymbo System System
Quantity of electricity . . . . ¢ [L: M5 T7Y] [L% M3F].

Line-integral of electro—} LB (AT [LAMETY

motive force
Quantity of magnetism
Electrokinetic momentum} . {m} [L%r JW’*'?] [73 ME 771.
of a circuit P
Electric current. C a gyl 1 g1
) C e Ms T2 2 M= 1],
Magnetie potential } {Q} [2# ][R

Electric displacement _—T; A -
Surface-density } e D [LTEMETTYY [LE M.

Electromotive force at a point @& [L_% MET - [L’} MiT 2.
Magnetic induction . . . . . B [LEMY] [Z3ard 7.
Magnetic force . . . . . . .. H [L’}T M 772] [L—%' M I1.

Strength of current at a point € [IF% arE 7% [L7% MET.
Vector potential . . . .. .. A (LMY (LFMET7].
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627.] We have already considered the products of the pairs of
these quantities in the order in which they stand. Their ratios are
in certain cases of scientific importance. Thus

Electrostatic Electromagnetic

Symbol.  System. System.
7%
—2,— = capacity of an accumulator .. ¢ [£] [-—L—] .
coeflicient of self-induction 7
% { of a cireuit, or elu,tro—} L [L] 4]
magnetic capacity
D specific inductive capacity [IE] .
(O { of dieleetric } K Lol 72
B .. . . Vg
% = magnetic inductive capacity . . ]:ZE] [0].
E . T L
T = resistance of a conductor . . . . 2 [T] [—Z—,-]
& specific resistance of a L?
[ { substance } e 7 (7] [7] '

628.] If the units of length, mass, and time are the same in the
two systems, the number of electrostatic units of electricity con-
tained in one electromagnetic unit is numerically equal to a certain
veloeity, the absolute value of which does not depend on the
magnitude of the fundamental units employed. This velocity is
an important physical quantity, which we shall denote by the
symbol ».

Number of Electrostatic Units in one Electromagnetic Unit.
Yore C, 0,9, 8,6, ...... v,
Form, p, B, B, G, A, ...... ~.

For electrostatic capacity, dielectrie inductive capacity, and con-
ductivity, »2.

For electromagnetic capacity, magnetic inductive capacity, and
resistance, — -
v

Several methods of determining the velocity » will be given in
Arts. 768-780.

In the electrostatic system the specific dielectric inductive capa-
city of alr is assumed equal to unity. ™This quantity is therefore

represented by ;—2 in the electromagnetic system.

R 2
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In the clectromagnetic system the specific magnetie inductive
capacity of air is assumed equal to unity. This quantity is there-

fore represented by ;15 in the electrostatic system.

Practical System of Electric Units.

629.] Of the two systems of units, the electromagnetic is of the
greater use to those practical electricians who are oceupied with
electromagnetic telegraphs. If, however, the units of length, time,
and mass are those commonly used in other scientific work, such
as the métre or the centimétre, the second, and the gramme, the
units of resistance and of electromotive foree will be so small that
to express the quantities occurring in practice enormous numbers
must be used, and the units of quantity and capacity will be so
large that only exceedingly small fractions of them can ever occur
in practice. Practical electricians have therefore adopted a set of
electrical units deduced by the electromagnetic system from a large
unit of length and a small unit of mass.

The unit of length used for this purpose is ten million of métres,
or approximately the length of a quadrant of a meridian of the
earth.

The unit of time is, as before, one second.

The unit of mass is 10711 gramme, or one hundred millionth
part of a milligramme.

The electrical units derived from these fundamental units have
been named after eminent electrical discoverers. Thus the practical
unit of resistance is called the Ohm, and is represented by the
resistance-coil issued by the British Association, and deseribed in
Art. 340. Jt 1s expressed in the electromagnetic system by a
velocity of 10,000,000 metres per second.

The practical unit of electromotive force is called the Volt, and
is not very different from that of a Daniell’s cell. Mr. Latimer
Clark has recently invented a very constant cell, whose electro-
motive foree is almost exactly 1.457 Volts.

The practical unit of capacity is called the Farad. The quantity
of electricity which flows through ene Ohm nnder the electromotive
force of one Volt during onc second, is equal to the charge produced
in a condenser whose capacity is one Farad by an electromotive
force of one Volt.

The use of these names 1s found to be more convenient in practice
than the constant repetition of the words ¢ electromagnetic units,’

IRIS - LILLIAD - Université Lille 1



629.] PRACTICAL UNITS. 245

with the additional statcment of the particular fundamental units
on which they are founded.

‘When very large quantities are to be measured, a large unit
is formed by multiplying the original unit by one million, and
placing before its name the prefix mega.

In like manner by prefixing micro a small unit is formed, one
millionth of the original unit.

The following table gives the values of these practical units in
the different systems which have been at various times adopted.

; e . i
FUNDAMENTAL PRACTICAL B. A. REPORT,

USITS. SYSTEM, 1863. , Teomsow. | WEBER.
Length, Earth’s Quadrant, Metre, | Centimetre, | Millimetre,
Time, Second, Sccond, . Second, Second,
Mass. 1072 Gramme. Gramme. ' Gramme. | Milligramme
Resistance Ohm 107 ‘ 107 101
Electromotive force Volb 10° 102 1o0n
Capacity Farad 10-7 10—°® 10—
Quantity Farad 102 10— 10
\ (charged to a Volt.)
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CHAPTER XI.

ON ENERGY AND STRESS IN THE ELECTROMAGNETIC FIELD.

Flectrostatic Energy.

630.] THE energy of the system may be divided into the Potential
Energy and the Kinetic Energy.

The potential energy due to electrification has been already con-
sidered in Axrt. 85. Tt may be written

W=13(¥), (1)

where ¢ is the charge of electricity at a place where the electric
potential is ¥, and the summation is to be extended to every place
where there is electrification.

If /, g, £ are the components of the electric displacement, the
quantity of electricity in the element of volume dw dy dz is

§f+ ‘ZJ” + M oy a, (2)

and W= lfff(']f+ Z‘f %)‘P(Zxdydz, 3)

where the integration is to be extended throughout all space.

631.] Integrating this expression by parts, and remembering
that when the distance, 7, from a given point of a finite electrified
system becomes infinite, the potential ¥ becomes an infinitely small
quantity of the order 771, and that f, g, 2 become infinitely small
quantities of the order 72, the expression is reduced to

W=— fff(f‘“’ @+ﬁ~)dmd/dz, (4)

where the integration is to be extended throughout all space.
If we now write P, @, R for the components of the electromotive
av a¥

force, instead of — —, — —, and — €E, we find
dx dy dz

W:é/ff(l’f—%Qﬂ-*—R/t)dxflydz. (5)
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Hence, the electrostatic energy of the whole field will be the same
if we suppose that it resides in every part of the field where elec-
trical force and elcctrical displacement occur, instead of being
confined to the places where free electricity is found.

The energy in unit of volume is half the product of the electro-
motive force and the electric displacement, multiplied by the cosine
of the angle which these vectors include.

In Quaternion language it is —3SED.

Magnetic Energy.

632.] We may treat the energy due to magnetization in a similar
way. If 4, B, C are the components of magnetization and a, 8, ¥
the components of magnetic force, the potential encrgy of the
system of magnets is, by Art. 389,

_é‘/ff(Aa_}_Bﬁquy)dxdg/dz, (6)

the integration being extended over the space occupied by mag-
netized matter. This part of the energy, however, will be included
in the kinetic energy in the form in which we shall presently
obfain it.

633.] We may transform this expression when there are no elec-
tric currents by the following method.

We know that dae d& de

an + @ + 7 = 0. (7)
Hence, by Art. 97, if
aQ aQ aQ
=T PET g YT )
as is always the case in magmnetic phenomena where there are no
currents,
/f/(a a+bp)+ey)dedyds = 0, (9)

the integral being extended throughout all space, or

~/I/-{(a-}-4'A'A}tz—+~(/3-+~477]3)/34-(}'+ 4n C)y}drdyds = 0. (10)

Hence, the energy due to a magnetic system

~%fff(Aa+Bﬁ+Cy) dedydz = 1 [[[ @ 21y iy,

= -Sl;//f\gz(lzdydz.‘ (11)
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Electrokinetic Energy.

634.7 We have already, in Art. 578, expressed the kinetic encrgy
of a system of eurrents in the form
T=32(p2) (12)
where p is the electromagnetic momentum of a circuit, and i is
the strength of the current flowing round it, and the summation
extends to all the circuits,
But we have proved, in Art. 590, that p may be expressed as
a line-integral of the form

P = f(F “7~/ +H’Zz) ds, (13)

where ¥, (7, H are the components of the electromagnetic mo-
mentum, 9, at the point (£ 2), and the integration is to be ex-
tended round the closed circuit s. We therefore find

=§Ezf(Fdx+Gd‘/+H ) ds. (14)

If w, v, w are the components of the density of the current at
any point of the conducting circuit, and if § is the transverse
section of the circuit, then we may write

ié_”s‘:us, i‘%:vs, zjj:wS (15)
and we may also write the volume
Sds = dz dy dz,
and we now find

7= l//(Fu+Gv+]Iw)dxder, (16)

where the integration is to be extended to every part of space
where there are electric currents.

635.] Lt us now substitute for #, », w their values as given by
the equations of electric currents (E), Art. 607, in terms of the
components a, ,8, 7 of the mao-netic force ‘We then have

fff{ ( tZz {Tz_f_ (*]é‘—d—; }(szydz, (1:

Where the mtegratum is extended over a portion of space including
all the currents.

If we integrate this by parts, and remember that, at a great
distance » from the system, @, 3, and y are of the order of mag-
nitude r_3 we find that when the integration is extended through-
out all space, the expression is reduced to

dll dG alr dH (ZG ar
reafff{e( (Coy = &)+ Car = 3) + 7 = )y dodyde. ©
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By the equations (A), Art. 591, of magnetic induction, we may
substitute for the quantities in small brackets the components of
magnetic induction a, 6, ¢, so that the kinetic energy may be
written

T:S%f] (@a+bB+cy)dudyde, (19)

where the integration is to be extended throughout every part of
space in which the magnetic force and magnetic induction have
values differing from zero.

The quantity within brackets in this expression is the product of
the magnetic induction into the resolved part of the magnetic force
in its own direction.

In the language of quaternions this may be written more simply,

—8.89.
where 8 is the magnetic induction, whose components are &, 4, c,
and &) is the magnetic force, whose components are a, 3, y.

636.] The electrokinetic energy of the system may therefore be
expressed either as an integral to be taken where there are electric
currents, or as an integral to be taken over every part of the fleld
in which magnetic force exists. The first integral, however, is the
natural expression of the theory which supposes the currents to act
upon each other directly at a distance, while the second is appro-
priate to the theory which endeavours to explain the action between
the currents by means of some intermediate action in the space
between them. As in this treatise we bave adopted the latter
method of investigation, we naturally adopt the second expression
as giving the most significant form to the kinetic energy.

According to our hypothesis, we assume the kinetic energy to
exist wherever there is magnetic force, that is, in general, in every
part of the field. The amount of this energy per unit of volume

is — %_S%Jj, and this energy exists in the form of some kind

of motion of the matter in every portion of space.

When we come to consider Faraday’s discovery of the effect of
magnetism on polarized light, we shall point out reasons for be-
lieving that wherever there are lines of magnetic force, there is
a rotatory motion of matter round those lines, See Art. 821,

Mugnetic and Electrokinetic Energy compared.
637.] We found in Art. 423 that the mutual potential energy
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of two magnetic shells, of strengths ¢ and ¢, and bounded by the
closed curves s and & respectively, is

— ¢ f/ CO:f ds ds’,

where € 1s the angle between the directions of ds and ds’, and 7
1s the distance between them.

We also found in Art. 521 that the mutual energy of two circuits
s and &, in which currents 4 and ¢ flow, is

.. cos e
7 z'ff dsds’.
P

If 7, 4" are equal to ¢, ¢’ respectively, the mechanical action
between the magnetic shells is equal fto that between the cor-
responding electric circuits, and in the same direction. In the case
of the magnetic shells, the force tends to diminish their mutual
potential energy, in the case of the circuits it tends to increase their
mutual energy, because this energy is kinetic,

It is impossible, by any arrangement of magnetized matter, to
produce a system corresponding in all respects to an electric circuit,
for the potential of the magnetic system is single valued at every
point of space, whereas that of the electric system is many-valued.

But it is always possible, by a proper arrangement of infinitely
small electric circuits, to produce a system corresponding in all
respects to any magnetic system, provided the line of integration
which we follow in calculating the potential is prevented from
passing through any of these small circuits. This will be meore
fully explained in Art. 833.

The action of magnets at a distance is perfectly identical with
that of electric currents. We therefore endeavour to trace both
to the same cause, and since we cannot explain electric currents
by means of magnets, we must adopt the other alternative, and
explain magnets by means of molecular electric currents.

633.] In our investigation of magnetic phenomena, in Part III
of this treatise, we made no attempt to account for magnetic action
at a distance, but treated this action as a fundamental fact of
experience. We therefore assumed that the energy of a magnetic
system Is potential energy, and that this energy is diminished when
the parts of the system yield to the magnetic forces which act
on them.

If, however, we regard magnets as deriving their properties from
electriec currents eirculating within their molecules, their energy
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is kinetic, and the force between them is such that it tends to
move them in a direction such that if the strengths of the currents
were maintained constant the kinetic energy would increase.

This mode of explaining magnetism requires us also to abandon
the method followed in Part 1II, in which we regarded the magnet
as a continuous and homogeneous body, the minutest part of which
has magnetic properties of the same kind as the whole.

‘We must now regard a magnet as containing a finite, though
very great, number of electric circuits, so that it has essentially
a molecular, as distinguished from a continuous structure.

If we suppose our mathematical machinery to be so coarse that
our line of integration cannot thread a molecular circuit, and that
an immense number of magnetic molecnles are contained in our
element of volume, we shall still arrive at results similar to those
of Part III, but if we suppose our machinery of a finer order,
and capable of investigating all that goes on in the interior of the
molecules, we must give up the old theory of magnetism, and adopt
that of Ampere, which admits of no magnets exeept those which
consist of electric currents.

We must also regard both magnetic and electromagnetic energy
as kinetic energy, and we must attribute to it the proper signm,
as given in Art. 635.

In what follows, though we may oceasionally, as in Art. 639, &ec.,
attempt to carry out the old theory of magnetism, we shall find
that we obtain a perfectly consistent system only when we abandon
that theory and adopt Ampére’s theory of molecular currents, as in
Art. 644.

The energy of the field therefore consists of two parts only, the
electrostatic or potential energy

W= %fff(Pf+ Qg+ RE) du dyde,

and the electromagnetic or kinetic energy

1
7= ﬂff (@a+6B+cy)dzdyde.

ON THE FORCES WHICH ACT ON AN ELEMENT OF A BODY PLACED
IN THE ELECTROMAGNETIC FIELD.

Forces acting on a Magnetic Element.

639.] The potential energy of the element dzdydz of a body
magnetized with an intensity whose components are 4, B, €, and
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placed in a field of magnetic force whose components are a, 8, y, i8
—(da+ BB+ Cy)dadyde.
Hence, if the force urging the element to move without rotation
in the direction of # is X, (Zxd./dz
X, =421 3% 0%, M
dz da
and if the moment of the couple tending to turn the element about
the axis of & from y towards z is L dedy de,
L = By—CB. ()

The forces and the moments corresponding to the axes of y and
z may be written down by making the proper substitutions.

640.] If the magnetized body carrics an electric current, of
which the components are =, ¥, w, then, by equations C, Art. 603,
there will be an additional electromagnetic force whose components
are X,, ¥y, Z,, of which X, is

X, = ve —wh. (3)

Hence, the total force, X, arising from the magnetism of the

molecule, as well as the current paqsinu' through it, is

X=4 +B‘ff 0 7t ve—wh, (4)

The quantities a, 4, ¢ are the components of magnetic induction,
and are related to a, B, y, the components of magnetic force, by
the equations given in Art. 400,

a=a+474d,
6:[3-{—47}'3,% (5)
¢ = y+4=nC.

The components of the current, #, », w, can be expressed in terms
of a, B, y by the equations of Art. 607,

dru = %_%’1
e ©)
Hence dmw = Ifii _%. |
=zl;{(a—a)§—;+(b—ﬁ)‘fiﬂ +(o— +5(da dﬂ) %_*
S T R TE M
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- de db  de

By Art. 403, - ZZ;—*'ZZ}—*-%:

Multiplying this equation, (8), by a, and dividing by 4=, we may
add the result to (7), and we find

d
Y= 48 [sa b +p0 48] + éj* EEPACHISNO

0. (8)

also, by (2), L= ’417; (B—B)y—(c—7) B), (10)

= (y—ep) (11)

where X is the force referred to unit of volume in the direction of
2, and I, is the moment of the forces about this axis.

On the Erplanation of these Forces by the Ilypothesis of a Medium
tn @ State of Stress.

641.] Let us denote a stress of any kind referred to unit of area
by a symbol of the form P,,, where the first suffix, ,, indicates that
the normal to the surface on which the stress is supposed to act
is parallel to the axis of %4, and the second suffix, ,, indicates that
the direction of the stress with which the part of the body on
the positive side of the surface acts on the part on the negative
side is parallel to the axis of £.

The directivns of % and % may be the same, in which case the
stress 18 a normal stress. They may be oblique to each other, in
which cuse the stress is an oblique stress, or they may be perpen-
dicular to each other, in which case the stress is a tangential
stress.

The condition that the stresses shall not produce any tendency
to rotation in the elementary portions of the body is

Py = Py

In the case of a magnetized body, however, there is such a
tendency to rotation, and therefore this condition, which holds in
the ordinary theory of stress, is not fulfilled.

Let us consider the effect of the stresses on the six sides of
the elementary portion of the body dz dy dz, taking the origin of
coordinates at its centre of gravity.

On the positive face dy dz, for which the value of # is {dr, the
forces are—
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Parallel to z, (Pm—}—égPﬂ’ dx) dyde = X0
Parallel to g, (Pz, +§ Loy dm) dydz = ¥4, (12)

Parallel to 2, (Pzz+ L P’" dm) dyde = Z.,

The forces acting on the oppos1te side, —=X_,, —Y_,,and —Z_,,
may be found from these by changing the sign of dz. 'We may
express in the same way the systems of three forces acting on each
of the other faces of the element, the direction of the force being
indicated by the capital letter, and the face on which it acts by
the suffix.

If X dzdydz is the whole force parallel to z acting on the element,

X(lmdydz_X+m+X+y+X+,+X X+ X,
_ T 1/1: zz
—(dx +2 dz +- ) fadlyda

whence X = % P+ % P+ jdé L. (13)

If Idedydz is the moment of the forces about the axis of #
tending to turn the clement from 7 to 2,

Ldedyds = Ydy(Z,,—Z_))—%de (Y, —Y_,),
= (P, — L) dedydz,

whence L=r,-P,. (14)

Comparing the values of X and Z given by equations (9) and
(11) with those given by (138) and (14), we find that, if we make

1 2
P = - (aa—3§ @ +5+7%),

-

Py = 1 (08— 4 (2467477,

P, = %r(cv—% (@® +B%+v%)), L

: (15)
szj};b% P ¢,
1 1
P = _ _-
BT 411-0‘1’ 'Pzz 47ra.y’
1 1

'lel=aaﬁ’ Pw=aéa,

-

the force arising from a system of stress of which these are the
components will be statically equivalent, in its effects on each
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element of the body, with the forces arising from the magnetization
and electric currents.

642.7 The nature of the stress of which these are the components
may be easily found, by making the axis of z bisect the angle
between the directions of the magnetic force and the magnetic
induction, and taking the axis of 7 in the plane of these directions,
and measured towards the side of the magnetic force.

If we put & for the numerical value of the magnetic force, B for
that of the magnetic induction, and 2¢ for the angle between their
directions,

a= Hcose B= $Hsing v =0, } (16)
2 = B cose, b = —Bsine, ¢c=0;

1 -
P = E( B H cos? e—§ H?),

~

1 . .
Py = (=B Hsin?— 1 9,

1 .
— = () 2
22_471"( 2‘59 ) } (17)
= 'PZI = 'sz = sz = 0’
P, = i%{)cosesing

oy 4

1 .
P, = —ESB.g)cosesme. ]
Hence, the state of stress may be considered as compounded of —
(1) A pressure equal in all directions = §L H2,
™

(2) A tension along the line bisecting the angle between the
directions of the magnetic force and the magnetic induetion

1
=— VH cos?e.
g B H cos? e
(3) A pressure along the line bisecting the exterior angle between
. . 1 .
these directions = p= B PHsin?e.
(4) A couple tending to turn every element of the substance in
the plane of the two directions jfrom the direction of magnetic

induction #o the direction of magnetic force = 4i_ BHsin2e
T

When the magnetic induction is in the same direction as the
magnetic force, as it always is in fluids and non-magnetized solids,
then € = 0, and making the axis of # coineide with the direction of
the magnetie force,
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—(33@ 297, Py=P.=— g 9% (18)

and the tangential stresses disappear. ;
The stress in this case is therefore a hydrostatlc pressure o— H2,

combined with a longitudinal tensmn -— % & along the lines of
force.

643.] When there is no magnetization, B = &, and the stress is
still further simplified, being a tension along the lines of force equal

to ? $2, combined with a pressure in all dlrechons at right angles
to the lines of force, numerically equal also to o {32 The com- -

ponents of stress in this important case are
1
Pp= (=), |

P

Yy

1
= ﬂ(ﬁz—}'z—az)a

1
__ 2__,2__ Q2
Pzz—s,”(y a B%),

1 > (19)
Pvz E Pw = ﬂﬁy,

1
Pzz':Pzz: :1_7'1_7“,

1
P"”=P”'=ﬂra‘3' ]

The force arising from these stresses on an element of the medium
referred to unit of volume is

ged, 4 d
- dr Lz @Pyz+ %pzzs

_Fl_ da ige] dy 1 ag da ‘1 dy da
B {dx de yé]x}+ﬂ{a»«+ﬁ—r_} { dz ydz}

1 (da tZB ) 1 da dy 1 4B da)

T dz  dz an " \de  dy
Now %+%+Z—:_4wm,
%—3—5:47710,

where 7 is the density of austral magnetic matter referred to unit
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of volume, and » and w are the components of electric currents
referred to unit of arca perpendicular to » and 2 respectively. Hence,
X=amtv y—w 3B (Equations of
Similarly Y=FBmt+wa— ny, Elec;x‘-grnclzg)netic (20)
Z=ymt+upB—va '

644.) If we adopt the theories of Ampeére and Weber as to the
pature of magnetic und diamagnetic bodies, and assume that mag-
petic and diamagnetic polarity are due to molecular electrie currents,
we get rid of imaginary magnetic matter, and find that everywhere

m = 0, and gg+ﬁ—f+ig=0, (21)
so that the equations of electromagnetic force become,
X=vy—w§5,
VY=wa—uy, (22)
Z=uB—va

These are the ecomponents of the mechanical foree referred to unit
of volume of the substance. The components of the magnetic force
are a, 3, 7, and those of the electric current are %, v, w, These
equations are identical with those already established. (Equations
(C), Art. 603.)

645.] In explaining the clectromagnetic force by means of a
state of stress in a medium, we are only following out the con-
ception of Faraday *, that the lines of magnetic force tend to
shorten themselves, and that they repel each other when placed
side by side. All that we have done is to express the value of
the tension along the lines, and the pressure at right angles to
them, in mathematical language, and to prove that the state of
stress thus assumed to exist in the medium will actually produce
the observed forces on the conductors which carry electric currents.

We have asserted nothing as yet with respect to the mode
in which this state of stress is originated and maintained in the
medium. We have merely shewn that i1t is possible to conceive
the mutual action of electric currents to depend on a particular
kind of stress in the surrounding medium, instead of being a direct
and immediate action at a distance.

Any further explanation of the state of stress, by means of the
motion of the medium or otherwise, must be regarded as a separate
and independent part of the theory, which may stand or fall without
affecting our present position. See Art. 832.

* Fap. Res., 3266, 3267, 3268,
\VOL. 11, 8
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In the first part of this treatise, Art. 108, we shewed that the
observed electrostatic forces may be conceived as operating through
the intervention of a state of stress in the surrounding medium.
‘We have now done the same for the electromagnetic forces, and
it remains to be seen whether the conception of a medium capable
of supporting these states of stress is consistent with other known
phenomena, or whether we shall have to put it aside as unfruitful.

In a field in which electrostatic as well as electromagnetic action
is taking place, we must suppose the electrostatic stress described
in Part 1 to be superposed on the electromagnetic stress which we
have been considering.

646.] If we suppose the total terrestrial magnetic force to be
10 British units (grain, foot, second), as it is nearly in Britain, then
the tension perpendicular to the lines of force is 0.128 grains weight
per square foot. The greatest magnetic tension produced by Joule¥
by means of clectromagnets was about 140 pounds weight on the
square inch.

* Sturgeon’s Annals of Electricity, vol. v. p.187 (1840); or Philosephical Mugazine,
Dec., 1851.
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CHAPTER XIL
CURRENT-SHEETS.

647.] A CURRENT-sHEET is an infinitely thin stratum of con-
ducting matter, bounded on both sides by insulating media, so that
electric eurrents may flow in the sheet, but cannot escape from it
except at certain points called Electrodes, where currents are made
to enter or to leave the sheet,.

In order to conduct a finite electric current, a real sheet must
have a finite thickness, and ought therefore to be considered a
conductor of three dimensions. In many ecases, however, 1t is
practically convenient to deduce the electric properties of a real
condueting sheet, or of a thin layer of coiled wire, from those of
a current-sheet as defined above.

‘We may therefore regard a surface of any form as a current-sheet.
Having selected one side of this surface as the positive side, we
shall always suppose any lines drawn on the surface to be looked
at from the positive side of the surface. In the case of a closed
surface we shall consider the outside as positive.  See Art. 294,
where, however, the direction of the current is defined as seen from
the negative side of the sheet.

The Current-function.

648.] Let a fixed point 4 on the surface be chosen as origin, and
let a line be drawn on the surface from 4 to another point P. Let
the quantity of electricity which in unit of time crosses this line
from left to right be ¢, then ¢ is called the Current-function at
the point 2.

The current-function depends only on the position of the point P,
and is the same for any two forms of the line 4P, provided this

s 2
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line can be transformed by continuous motion from one form to the
other without passing through an electrode. For the two forms of
the line will enclose an area within which there is no electrode, and
therefore the same quantity of electricity which enters the area across
one of the lines must issue across the other.

If s denote the length of the line AP, the current across ds from

left to right will be {ﬁ—’ds.
ds

If ¢ is constant for any curve, there is no current across it. Such
a curve is called a Current-line or a Stream-line.

649.] Let ¢ be the electric potential at any point of the sheet,
then the electromotive force along any element ds of a curve will be
’fl—:{,ds,
provided no electromotive force exists except that which arises from
differences of potential.

If ¥ is constant for any curve, the curve is called an Equi-
potential Line.

650.] We may now suppose that the position of a point on the
sheet is defined by the values of ¢ and y at that point. Let ds, be
the length of the element of the equipotential line Y intercepted
between the two current lines ¢ and ¢+d¢, and let ds, be the
length of the element of the current line ¢ intercepted between the
two equipotential linesy and r+d. We may consider ds, and ds,
as the sides of the element d¢ dy of the sheet. The electromotive
force —dy in the direction of s, produces the current d¢ across ds, .

Let the resistance of a portion of the sheet whose length is ds,,
and whose breadth is ds;, be ds,

ds,
where o is the specific resistance of the sheet referred to unit of
area, then s,
d\l/ = T —d*gdd),
ds,  ds,
whence 674; = (Td"l’

651.] If the sheet is of a substance which conducts equally well
in all directions, ds; is perpendicular to ds,. In the case of a sheet
of uniform resistance ¢ is constant, and if we make ¥ = gy, we
shall have ds, d¢

ds, — dy’
and the stream-lines and equipotential lines will eut the surface into
lhittle squares.
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It follows from this that if ¢, and y," are conjugate functions
(Art. 183) of ¢ and y/, the curves ¢, may be stream-lines in the
sheet for which the curves " are the corresponding equipotential
lines. One case, of course, is that in which ¢; = ¢ and "= —¢.
In this case the equipotential lines become current-lines, and the
current-lines equipotential lines *.

If we have obtained the solution of the distribution of electric
currents in a uniform sheet of any form for any particular case, we
may deduce the distribution in any other case by a proper trans-
formation of the conjugate functions, according to the method given
in Art. 190,

652.] We have next to delermine the magnetic action of a
current-sheet in which the current is entirely cenfined to the sheet,
there being no electrodes to convey the current to or from the
sheet.

In this case the current-function ¢ has a determinate value at
every point, and the stream-lines are closed curves which do not
intersect each other, though any one stream-line may intersect
itself.

Consider the annular portion of the sheet between the stream-
lines ¢ and ¢p+8¢p. This part of the sheet is a conducting circuit
In which a current of strength d ¢ circulates in the positive direction
round that part of the sheet for which ¢ is greater than the given
value. The magnetic eflect of this circuit is the same as that of
a magnoetic shell of strength & ¢ at any point not included in the
substance of the shell. Ifet us suppose that the shell eoincides with
that part of the current-sheet for which ¢ has a greater value than
it has at the given stream-line.

By drawing all the successive stream-lines, beginning with that
for which ¢ has the greatest value, and ending with that for which
its value is least, we shall divide the current-sheet into a series
of circuits. Substituting for each circuit its corresponding mag-
netic shell, we find that the magnetic effeet of the current-sheet
at any point not included in the thickness of the sheet is the same
as that of a complex magnetic shell, whose strength at any point
is O+ ¢, where C is a constant.

If the current-sheet is bounded, then we must make € +¢ =0
at the bounding curve. If the sheet forms a closed or an infinite
surface, there is nothing to determine the value of the constant C.

* See Thomson, Camb. and Dub. Math. Journ., vol.iii. p. 286.
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653.] The magnetic potential at any point on either side of the
current-sheet is given, as in Art. 415, by the expression

Q =ff;l7¢cos0d»5',

where » is the distance of the given point from the element of
surface ¢85, and 8 is the angle between the direction of 7, and that
of the normal drawn from the positive side of 438.

This expression gives the magnetic potential for all points not
included in the thickness of the current-sheet, and we know that
for points within a conductor carrying a current there is no such
thing as a magnetic potential.

The value of Q is discontinuous at the current-sheet, for if Q,
is its value at a point just within the current-sheet, and Q, its
value at a point close to the first but just outside the current-sheet,

0, = O +47¢,
where ¢ is the current-function at that point of the sheet.

The value of the component of magnetic force normal to the
sheet is continuous, being the same on both sides of the sheet.
The component of the magnetic force parallel to the current-lines
is also continuous, but the tangential component perpendicular to
the current-lines is discontinuous at the sheet. If s is the length
of a curve drawn on the sheet, the component of magnetic force

in the direction of ds is, for the negative side, ‘% and for the
itive side a8y _ 49, +4 gy
POSIUVE SIS 0 = @5 """ s

The component of the magnetic force on the positive side there-

fore exceeds that on the negative side by 4 w%? At a given point

this quantity will be a maximum when ds is perpendicular to the
current-lines.

On the Induction of Flectric Currents in a Sheet of Infinite
Conductivity.
654.] It was shewn in Art. 579 that in any circuit
=" i
where & 1s the impressed electromotive foree, p the electrokinetic
momentum of the eirecuit, £ the resistance of the circuit, and ¢ the
current round it. If there is no impressed electromotive force and

no resistance, then (gg = 0, or p is constant.
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Now p, the electrokinetic momentum of the circuit, was shewn
in Art. 588 to be measured by the surface-integral of magnetic
induction through the circuit. Hence, in the case of a current-
sheet of no resistance, the surface-integral of magnetic induction
through any closed curve drawn on the surface must be constant,
and this implies that the normal component of magnetic induction
remains constant at every point of the current-sheet.

665.] If, therefore, by the motion of magnets or variations of
currents in the mneighbourhood, the magnetic field is in any way
altered, electrie currents will be set up in the current-sheet, such
that their magnetic effect, combined with that of the magnets or
currents in the field, will maintain the normal component of mag-
netic induction at every point of the sheet unchanged. If at first
there is no magnetic action, and no currents in the sheet, then
the normal component of magnetic induction will always be zero
at every point of the sheet.

The sheet, may therefore be regarded as impervious to magnetic
induction, and the lines of magnetic induction will be deflected by
the sheet exactly in the same way as the lines of flow of an electric
current in an infinite and uniform conducting mass would be
deflected by the introduction of a sheet of the same form made
of a substance of infinite resistance,

If the sheet forms a closed or an infinite surface, no magnetic
actions which may take place on one side of the sheet will produce
any magnetic effect on the other side.

Theory of @ Plane Current-gheet.

656.] We have seen that the external magnetic action of a
current-sheet is equivalent to that of a magnetic shell whose strength
at any point is numerically equal to ¢, the current-function. When
the sheet is a plane one, we may express all the quantities required
for the determination of electromagnetic effects in terms of a single
function, £, which is the potential duc to a sheet of imaginary
matter spread over the plane with a surface-density ¢. The value

of P is of course é
r—[[tazay. (1)

where 7 is the distance from the point (#, g, 2) for which P is cal-
culated, to the point 2°, ¥, 0 in the plane of the sheet, at which the
element dz’” dy’ 1s 1aken.

To find the magnetic potential, we may regard the magnetic

IRIS - LILLIAD - Université Lille 1



264 CURRENT - SHEETS. [657.

shell as consisting of two surfaces parallel to the plane of 2y, the
first, whose equation is z = % ¢, having the surface-density %’ , and

the second, whose equation is 2 = —4% ¢, having the surface-density

¢

e
The potentials due to these surfaces will be
' 1 1
-P [ and —= P €y -
¢ (--5) ¢ (++3)
respectively, where the suflixes indicate that z—g is put for z

in the first expression, and 2 + % for z in the second. Expanding

these expressions by Taylor’s Theorem, adding them, and then
making ¢ infinitely small, we obtain for the magnetic potential due
to the sheet at any point external to it,
Q=— Y (2)
657.] The quantity P is symmetrical with respect to the plane of
the sheet, and is therefore the same when — 2 is substituted for 2.
Q, the magnetic potential, changes sign when —z is put for 2,
At the positive surface of the sheet

dP
== 3
Q S =27, (3)
At the negative surface of the sheet
dP
) 7 27 ¢ (1)

‘Within the sheet, if its magnetic effects arise from the magneti-
zation of its substance, the magnetic potential varies continu-
ously from 27¢ at the positive surface to —2n¢ at the negative
surface.

If the sheet contains electric currents, the magnetic force
within it does not satisfy the condition of having a potential.
The magnetic force within the sheet is, however, perfectly deter-
minate.

The normal compenent,

dQ  d*P
- E = W 1 (5)
is the same on both sides of the sheet and throughout its sub-
stance.

If a and B be the components of the magnetic force parallel to
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z and to ¥ at the positive surface, and o, 8 those on the negative

surface “ s nfl"f — ©)
dz
- dp _ _ o
;3_—-277;_—-,8. (7)

Within the sheet the components vary continuously from a and

Btod and 3.

. dH d@ 40
The equations 7 P 1
d¥ dH dQ
—_——— — — — — 8
dz dx dy (8)
4G _ar __ae
dz dy dz )

which connect the components #, G, II of the vector-potential due
to the current-sheet with the scalar potential Q, are satisfied if
we make ,
po P, _ar
da

We may also obtain these values by direct integration, thus for #,

e ., (f1dd,,.,
r=[[tar —f/;@d”%
— [P ff 1 ar
./r da’ — (I)dy’;dz ay.

Since the integration is to be estimated over the infinite plane
sheet, and since the first term vanishes at infinity, the expression is
reduced to the second term ; and by substituting

—{il for — a 1,
dy r dy’
and remembering that ¢ depends on 2’ and #/, and not on , 7, 2,

we obtain d ¢ ...,
F:Ef/TcZw ay’,

ar
= by (1)

If O’ is the magnetic potential due to any magnetic or electric
system external to the sheet, we may write

H = 0. (9)

P= —/ & da, (10)
and we shall then have
Z’”:Q, G’:—Q, H=0, (11)
dy dx

for the components of the vector-potential due to this system.
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658.] Let us now determine the electromotive foree at any point
of the sheet, supposing the sheet fixed.

Let X and ¥ be the components of the electromotive force parallel
to = and to y respectively, then, by Art. 598, we have

X__%(F+F')—%’, (12)
r=— 2 G+e)-2¥. (19)
dt dy
If the electric resistance of the sheet is uniform and equal to o,
X =ou, Y=o0n, (14)
where # and » are the components of the current, and if ¢ is the
current-function, w %, o %%, (15)
But, by equation (3),
2w = — il}j
az

at the positive surface of the current-sheet. Ilence, equations (12)
and (13) may be written
o dtpP a2 v
—_ = _r 16
andgde~ Gyt T % (16)
o d*P a2 \I/
ey Ay AC e

where the values of the expressions are those corresponding to the

(17)

positive surface of the sheet.
If we differentiate the first of these equations with respect to z,
and the second with respect to , and add the results, we obtain
aiy | di
G T (18)
The only value of y which satisfies this equation, and is finite
and continuous at every point of the plane, and vanishes at an
infinite distance, is ¥ = 0. (19)

Hence the induction of electric currents in an infinite plane sheet
of uniform conductivity is not accompanied with differences of
electric potential in different parts of the sheet.

Substituting this value of y, and integrating equations (16),
(17), we obtain 5 gp 4P dP

b7 ds —ar — a4 =@ (20)

Since the values of the currents in the sheet are [found by
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differentiating with respect to = or g, the arbitrary function of 2
and ¢ will disappear. We shall therefore leave it out of account.

If we also write for 5 7 , the single symbol &, which represents
T

a certain velocity, the equation between # and #” becomes
ar _dpr  ar
ZE AT
659.] Let us first suppose that there is no external magnetic
system acting on the current sheet. We may therefore suppose

(21)

P =0. The case then becomes that of a system of cleetric currents
in the sheet left to themselves, but acting on one another by their
mutual induction, and at the same time losing their energy on
account of the resistance of the sheet. The result is expressed
by the equation Rﬁ) _ df?) (22)
dz di

the solution of which is
P =f (29 («+ ). (23)

Hence, the value of P on any point on the positive side of the
sheet whose coordinates are #, g, 2, and at a time ¢ is equal to
the value of P at the point #, , (¢4 R¢) at the instant when ¢=0.

If therefore a system of currents is excited in a uniform plane
sheet of infinite extent and then left to itself, its magnetic eflect
at any point on the positive side of the sheet will be the same
as if the system of currents had been maintained constant in the
sheet, and the sheet moved in the direction of a normal from its
negative side with the constant velocity Z. The diminution of
the electromagnetic forces, which arises from a decay of the currents
in the real case, is accurately represented by the diminution of the
force on account of the increasing distance in the imaginary case.

660.] Integrating equation (21) with respect to £, we obtain

P FP= fﬁ’ (24)

If we suppose that at first P and P are both zero, and that a
magnet or electromagnet 1s suddenly magnetized or brought from
an infinite distance, so as to change the value of 7 suddenly from
zero to P, then, since the time-integral in the second member of
(24) vanishes with the time, we must have at the first instant

P=—0"r
at the surface of the sheet.
Hence, the system of currents excited in the sheet by the sudden
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introduction of the system to which 7’ is due is such that at the
surface of the sheet it exactly neutralizes the magmetic effect of
this system.

At the surface of the sheet, therefore, and' consequently at all
points on the negative side of it, the initial system of currents
produces an effect exactly equal and opposite to that of the
magnetic system on the positive side. We may express this by
saying that the effect of the currents is equivalent to that of an
image of the magnetic system, coinciding in position with that
system, but opposite as regards the direction of its magnetization
and of its electric currents. Such an image is called a negutive
lmage.

The effect of the currents in the sheet on a point on the positive
side of 1t is equivalent to that of a positive image of the magnetic
system on the negative side of the sheet, the lines joining corre-
sponding points being bisected at right angles by the sheet.

The action at a point on either side of the sheet, due to the
currents in the sheet, may therefore be regarded as due to an
image of the magnetic system on the side of the sheet opposite
to the point, this image being a positive or a negative image
according as the point is on the positive or the negative side of
the sheet.

661.] If the sheet is of infinite conductivity, £ = 0, and the
second term of (24) is zero, so that the image will represent the
effect of the currents in the sheet at any time.

In the case of a real sheet, the resistance & has some finite vahue.
The image just described will therefore represent the effect of the
currents only during the first instant after the sudden introduction
of the magnetic system. The currents will immediately begin to
decay, and the effect of this decay will be accurately represented if
we suppose the two images to move from their original positions, in
the direction of normals drawn from the sheet, with the constant
velocity A

662.] We arc now prepared to investigate the system of currents
induced in the sheet by any system, A, of magnets or electro-
magnets on the positive side of the sheet, the position and strength
of which vary in any manner.

Let 7, as before, be the function from which the direct action
of this system is to be deduced by the equations (3), (9), &c.,

then tgg 8¢ will be the function corresponding to the system re-
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aM
dt
in the time 3¢, may be regarded as itself representing a magnetic
system.

If we suppose that at the time ¢ a positive image of the system

fi;}[az is formed on the negative side of the sheet, the magnetic

presented by 3¢. This quantity, which is the inerement of 37

action at any poiut on the positive side of the sheet due to this
image will be equivalent to that due to the currents in the sheet
excited by the change in M during the first instant after the
change, and the image will continue to be equivalent to the
currents in ihe sheet, if, as soon as it is formed, it begins to move
in the negative direction of z with the constant velocity Z.

If we suppose that in every successive element of the time an
image of this kind is formed, and that as soon as it is formed
it begins to move away from the sheet with velocity R, we shall
obtaln the coneception of a trail of images, the last of which is
in process of formation, while all the rest are moving like a rigid
body away from the sheet with velocity .

663.] If # denotes any function whatever arising from the
action of the magnetic system, we may find P, the corresponding
function arising from the currents in the sheet, by the following
process, which is merely the symbolical expression for the theory
of the trail of images.

Let P2 denote the value of P (the function arising from the
currents in the sheet) at the point (2, #, 2+ £ 1), and at the time
t—z, and let P, denote the value of 7 (the function arising from
the magnetic system) at the point (2, g, —(2+ £ 1)), and at the
time £—r. Then dP. dB dP.

A ) [ 25
dr ~ dz T oal’ (25)
and equation (21) becomes

df, _dar; (26)

dr dt
and we obtain by integrating with respect to 7 from =0 to r=c0,
p=f g, (27)

0 dt

as the value of the funclion P, whence we obtain all the properties
of the current sheet by differentiation, as in equations (3), (9), &e.

664.] As an cxample of the process here indicated, let us take
the case of a single magnetic pole of strength unity, moving with
uniform velocity in a straight line.
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Let the coordinates of the pole at the time ¢ be
£ = ut, n =0, (= c4wt.
The coordinates of the image of the pole formed at the time
t—r are
E=u(t—r), n=0, C=—(c+w(—r)+4h),
and if 7 is the distance of this image from the point (z, g, 2),
2= @—ult—1))2+@tctw(f—1)+ L)%
To obtain the potential due to the trail of images we have to

calculate d /‘m dr
dtJ,

If we write @ = w4+ (R—w)?,
[ dT log{Qr+u( —uf)+(B—w)(z+e +wd)},

the value of'r in thls expression being found by making r = 0.

Differentiating this expression with respect to ¢, and putting
¢t = 0, we obtain the magnetic potential due to the trail of images,

w(z+c)—uz
@ 7)_ —
Q Qr+uz+L—w)(z+¢)

By differentiating this expression with respect to z or 2z, we
obtain the components parallel to # or z respectively of the mag-
vetic force at any point, and by putting 2 = 0, ¢ = ¢, and r = 2¢
in these expressions, we obtain the following values of the com-
ponents of the force acting on the moving pole itself,

1 u 1o u?
X=— gagra—nl' " @~ Q@iim)’

u?—n?4 B
Q=

g__ 1 {m u? }
=121 QU+ E—w)

665.] In these expressions we must remember that the motion
is supposed to have been going on for an infinite time before the
time considered. Hence we must not take m a positive quantity,
for in that case the pole must have passed through the sheet
within a finite time.

If we make u = 0, and 1 negative, X = 0, and

— 1 n
= 402 R4y
or the pole as it approaches the sheet is repelled from it.
If we make tv = 0, we find Q% = u®+ Rz,

x=—t o ME g z= LW

e Q(Q+ B QLR
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The component X represents a retarding foree acting on the pole
in the direction opposite to that of its own motion. For a given
value of £, X 1s a maximum when it = 1.27 .

When the sheet is a non-conductor, £ = o and X = 0.

When the sheet is a perfect conductor, £ = 0 and X = 0.

The component Z represents a repulsion of the pole from the
sheet. Tt increases as the velocity increases, and ultimately becomes

;1—2 when the velocity is infinite. It has the same value when
¢

R is zero.

666.] When the magnetic pole moves in a curve parallel to the
sheet, the caleulation becomes more complicated, but 1t is easy to
see that the effect of the nearest portion of the trail of images
is to produce a force acting on the pole in the direction opposite
to that of its motion. The effect of the portion of the trail im-
mediately behind this is of the same kind as that of a magmet
with its axis parallel to the direction of motion of the pole at
some time before. Since the nearest pole of this magnet is of the
same name with the moving pole, the force will consist partly of
a repulsion, and partly of a force parallel to the former direction
of motion, but backwards. This may be resolved into a retarding
force, and a force towards the concave side of the path of the
moving pole.

667.] Our investigation docs not enable us to solve the case
in which the system of currents cannot be completely formed,
on account of a discontinuity or boundary of the conducting
sheet.

It is easy to see, however, that if the pole is moving parallel
to the edge of the sheet, the currents on the side next the edge
will be enfeebled. Hence the forces due to these currents will
be less, and there will not only be a smaller retarding force, but,
since the repulsive force is least on the side next the edge, the pole
will be attracted towards the edge.

Theory of Arago’s Rotaling Disk.

668.7 Arago discovered * that a magnet placed near a rotating
metallic disk experiences a force tending to make it follow the
motion of the disk, although when the disk is at rest there is
no action between it and the magnet.

This action of a rotating disk was attributed to a new kind

* Annales de Chimie et de Physique, 1826,
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of induced magnetization, till Faraday* explained it by means of
the electrie currents induced in the disk on account of its motion
through the field of magmetic force.

To determine the distribution of these induced currents, and
their effect on the magnet, we might make use of the results already
found for a conducting sheet at rest acted on by a moving magnet,
availing ourselves of the method given in Art. 600 for treating the
electromagnetic equations when referred to moving systems of axes.
As this case, however, Las a special importance, we shall treat it
in a direct manner, beginning by assuming that the poles of the
magnet are so far from the edge of the disk that the effect of the
limitation of the conducting sheet may be neglected.

Making use of the same notation as in the preceding articles
(656-667), we find for the components of the electromotive force
parallel to & and y respectively,

_ W _dy
[o g /—] 'yaTt‘—‘%‘!
1
dr dy @
o

vV=—vy 32 —_ @ ) ]
where y is the resolved part of the magnetic force normal to the
disk.

If we now express » and o in terms of ¢, the current-function,

dé d
= ] = — —— 2
“= v T (2)
and if the disk is rotating about the axis of z with the angular
velocity w, dy dz
=00 = ey (3)
Substituting these values in equations (1), we find
de ay
¢ _ _ev 4
7 dy YO g )
de dy
— -t = — T, 5
Tdw VY dy )
Multiplying (4) by « and (5) by g, and adding, we obtain
de _ dey _ 2,2 ay  dy
a(m@ —y%)_yw(x +y)—(w% +3/@) (6)
Multiplying (4) by 7 and (5) by —=, and adding, we obtain
dp  dpy _ dy  dy
G(T(Zm +y@)_w}g 97 (7)
* Exp. Res., 81.
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If we now express these equations in terms of # and 0, where

x = 7cos 0, y =rsinb, (8)
']‘f’ A
) 2 __p T 9
they become oo =yert—ro 9)
fl([) IZ\[f
10
“ar Tds’ (10)
Equation (10) is satisfied if we assume any arbitrary function x
f # and 6, and make .
of # and 6, and make =i’}, (1)
do
a
¥ = rd’;( (12)
Substituting these values in equation (9), it becomes
d%x dayx
((ZGZ dr ( )) =yort (15)
Dividing by o#?, and restoring the coordinates # and g, this
becomes d?y d*xy o©
“eX (_ 9, 14
der T dy? o (14)

This is the fundamental equation of the theory, and expresses the
relation between the function, x, and the component, y, of the mag-
netic force resolved normal to the disk.

Let @ be the potential, at any point on the positive side of the
disk, due to imaginary matter distributed over the disk with the
surface-density x.

At the positive surface of the disk

@ —27y. (15)
ITence the first member of equation (14) becomes
dix d%y 1 az Q d2 d*Q
TAL T A . 16
dz? 1 dy* 27 dz (d.c ) (16)
But since @ satisfies Laplace’s equation at all points external
to the disk, 2 2 2
rq, g __oq o
dx?  dy? dz*
and equation (14) becomes
o d°
9 (]z?= Y. (18)
Again, since @ is the potential due to the distribution x, the
potential due to the distribution ¢, or % , will be E% . From this
we obtain for the magnetic potential due to the currents in the disk,
a2 Q
= — - ) 19
4 dldz (19)
VOL. II. T
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and for the component of the magnetic force normal to the disk

due to the currents,
d8 a2 Q

N=T 0 T doed?’

If Q, is the magnetic potential due to external magnets, and
Pz—fﬂgdz, (21)

the component of the magnetic force normal to the disk due to

(20)

if we write

the magnets will be a22pP
Y2 = 2 - (22)
de
We may now write equation (18), remembering that
Y =n+7e
o d*Q @aQ _ &P (23)
2w de® T Cdgdr T C
Integrating twice with respect to 2z, and writing Z for 2" ,
ki3
a d
Y oY O =P, 24
(R dz° (10) Q=0wP (24)
If the values of P and @ are expressed in terms of 7, 6, and ¢
where R
(=2— =0, (25)
w

equation (24) becomes, by integration with respect to ¢,
[ w
= [ . 20
Q=[5 Pag (20)
669.7 The form of this expression shews that the magnetic action
of the currents in the disk is cquivalent to that of a trail of images
of the magnetic system in the form of a helix.

If the magnetic system consists of a single magnetic pole of
strength unity, the helix will liec on the eylinder whose axis is
that of the disk, and which passes through the magnetic pole.

The helix will begin at the position of the optical image of the
pole in the disk. The distance, parallel to the axis between con-

secutive coils of the helix, will be 27—. The magnetic effect of
w

the trail will be the same as if this helix had been magnetized

everywhere in the direction of a tangent to the cylinder perpen-

dicular to its axis, with an intensity such that the magnetic moment

of any small portion is numerically equal to the length of its pro-
jection on the disk.
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The calculation of the effect on the magnetic pole would be
complicated, but it is easy to see that it will consist of—

(1) A dragging force, parallel to the direction of motion of
the disk.

(2) A repulsive force acting from the disk.

(3) A force towards the axis of the disk.

When the pole is near the edge of the disk, the third of these
forces may be overcome by the force towards the edge of the disk,
indicated 1n Art. 667.

All these forces were observed by Arago, and deseribed by him in
the Annales de Chimie for 1826. See also Felici, in Tortolini’s
Annals,iv, p. 173 (1853), and v. p. 35; and E. Jochmann, in Crelle’s
Jouwrnal, Ixiil, pp. 158 and 329; and Pogg. Aun. exxii, p. 214
(1864). In the latter paper the equations necessary for deter-
mining the induction of the currents on themselves are given, but
this part of the action is omitted in the subsequent calculation of
results.  The method of images given here was published in the
Proceedings of the Royal Society for Feb. 15, 1872.

Splcrical Current-Sheet.

670.7 Let ¢ be the eurrent-function at any point @ of a spherical
current-sheet, and let P be the po-
tential at a given point, due to a
sheet of imaginary matter distributed
over the sphere with surface-density
¢, it 1s required to find the magnetic
potential and the vector-potential of
the current-sheet in terms of P.

Let o denote the radius of the
sphere, 7 the distance of the given
point from the centre, and p the
reciprocal of the distance of the given point from the point @ on
the sphere at which the current-function is ¢.

The action of the current-sheet at any point not in its substance
1s 1dentical with that of a magnetic shell whose strength at any
point is numerically equal to the current-function.

The mutual potential of the magnetic shell and a unit pole placed
at the point P is, by Art. 410,

dp
Q _-/f‘l’d_a'is'
T2

P

Fig. 39.

IRIS - LILLIAD - Université Lille 1



276 CURRENT-SHEETS. [671.

Since p is a homogeneous function of the degree —1 in 7 and q,

dp dp
“da T -
dp 14
o %——;%@m

and Q= —/f (}w) 3.

Since 7 and a are constant during the surface-integration,

But if P is the potential due to a sheet of imaginary matter
of surface-density ¢,

and Q, the magnetic potential of the current-sheet, may be expressed
in terms of P in the form

1d

=— )

a dr

671.] We may determine £, the #-component of the vector-
potential, from the expression given in Art. 416,

P=[fo(nE—n2)as,

where £, 7, ¢ are the coordinates of the element dS, and Z, m, » are
the direction-cosines of the normal.
Since the sheet is a sphere, the direction-cosines of the normal are

I = 3 ) n = <.
T a’ T a’ T a
dp _ s _ %
But R_(z—{)p ==
dp _ s__ap
and dn = (y—n)p°= ZZ}'
. dp dp
so that AT = e—O—C—m) L 2

= (e(1—3)—y ({—2)) ‘1

_zdp_yp.

Tady ade’
multiplying by ¢ 48, and integrating over the surface of the sphere,
we find g 24P _ydP
. ady adz
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Similarly G = Zi(fz’f . Z%’
)

=24 _zd

ade ady

The vector I, whose components are £, G, 1, is evidently per-
pendicular to the radius vector r, and to the vector whose com-

dP dP dP
ponents are —, —, and —
du " dy dz
sections of the spherical surface whose radius is 7, with the sevies of
equipotential surfaces corresponding to values of £ in arithmetical
progression, these lines will indicate by their direction the direction
of 9, and by their proximity the magnitude of this vector.
In the language of Quaternions,
9 = % Vo VP
672.] If we assume as the value of P within the sphere

r-a()r,

If we determine the lines of inter-

where Y, is a spherical harmonie of degree ¢, then outside the sphere
g il
P=4(-) VY.
G) %
The current-function ¢ 1s
b = 2:+11 A7,
4m a
The magnetic potential within the sphere is
. 1, a5

O =— - -1 7,
G+1)24(2) s

and outside =ity (Z) HY;-.

e \r

For example, let it be required to produce, by means of a wire

coiled into the form of a spherical shell, & uniform magnetic force
M within the shell. The magnetic potential within ihe shell is, in
this case, a solid harmonic of the first degree of the form

Q = Mrcos b,
where M is the magnetic force. Hence A = —4 423, and

3
(p:ﬂ]l[acose.

The current-function is therefore proportional to the distance
from the equatorial plane of thé sphere, and therefore the number
of windings of the wire between any two small circles must be
proportional to the distance between the planes of these circles.
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If &V is the whole number of windings, and if y is the strength
of the current in each winding,
¢ = £ Nycosé.
Hence the magnetic force within the coil 1s
4w Ny
==L
673.] Let us next find the method of coiling the wire in order
to produce within the spherc a magnetic potential of the form of a
solid zonal harmonic of the second degree,

7.2
Q= A? (3 cos?268—3).

=
Here ¢ = %A (% cos28—1).
™

If the whole number of windings is A, the number between the
pole and the polar distance 0 is 4 NV sin?0.

The windings are closest at latitude 45°. At the equator the
direction of winding changes, and in the other hemisphere the
windings are in the contrary direction.

Let y be the strength of the current in the wire, then within

ha 2
the shell Q- %r Ny 2_2 (3 cos29— ).

Let us now consider a conductor in the form of a planc closed
curve placed anywhere within the shell with its plane perpendicular
to the axis, 'To determine its coefficient of induction we have to
find the surface-integral of 70 over the plane bounded by the

az
curve, putting y = 1.

47 ;
Now Q = slazﬂ (2 —4% (2% + %),

a8 87

and ‘T = 5a? Nz
Hence, if § is the area of the closed curve, its coefficient of in-
duction is
M=2" Nse.
5a

If the current in this conductor is ¥/, there will be, by Art. 583,
a force 7, urging it in the direction of z, where

AN _ BT

Z=vy dz ~ 5a? Sy?s

and, since this is independent of z, #, z, the force is the same in
whatever part of the shell the cireuit 1s placed.
674.] The method given by Poisson, and described in Aat. 437,
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may be applied to current-sheets by substituting for the body
supposed to be uniformly magnetized in the direction of z with
intensity /, a current-sheet having the form of its surface, and for
which the current-function is ¢ = Te. (1)

The currents in the sheet will be in planes parallel to that of 2y,
and the strength of the current round a slice of thickness dz will be

Idz.

The magnetic potential due to this current-sheet at any point

outside 1t will be O = —I(?Z- @)
dz

At any point inside the sheet 1t will be
Q:——’lw]z——]d—lf- : (3)

dz

The components of the vector-potential are
av av

F:—I@, G:]di, I = o. (4)

These results can be applied to several cases occurring in practice.

675.7 (1) A plane electrie circuit of any form,

Let 7 be the potential due to a plane sheet of any form of which
the surface-density 1s unity, then, if for this sheet we substitute
either a magnetic shell of strength I or an electric current of
strength [ round its boundary, the values of Q and of F, G, /1 will
be those given above.

(2) For a solid sphere of radius &,

im a®

V N when 7 is greater thun o, (8)
and V= %ZT (3a2—7%) when 7 is less than a. (6)

Hence, if such a sphere is magnetized parallel to 2 with intensity
Z, the magnetic potential will be

3
Q = 4?” L % z outside the sphere, (7
e
47 ..
and Q = - Iz inside the sphere. (8)

If, instead of being magnetized, the sphere is coiled with wire
in equidistant circles, the total strength of current between two
small circles whose planes are at unit distance being Z, then outside
the sphere the value of @ is as before, but within the sphere

0=— ?3? /e ©)

This is the case already discussed in Art. 672,
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(3) The case of an ellipsoid uniformly magnetized parallel to
a given line has been discussed in Art. 437,

If the ellipsoid is coiled with wire in parallel and equidistant
planes, the magnetic foree within the ellipsoid will be uniform.

(4) 4 Cylindric Magnet or Solenoid.

676.] If the body is a cylinder having any form of seetion and
bounded by planes perpendicular to its generating lines, and
if 7, is the potential at the point (»,y,2) due to a plane area of
surface-density unify coinciding with the positive end of the
solenoid, and 7, the potential at the same point due to a plane area
of surface-density unity coineciding with the negative end, then, if
the cylinder is uniformly and longitudinally magnetized with in-
tensity unity, the potential at the point (2,7, ) will be

Q=r-—7,. (10)

If the cylinder, instead of being a magmnetized body, is uniformly
lapped with wire, so that there are » windings of wire in unit
of length, and if a current, y, is made to flow through this wire,
the magnetie potential outside the solenoid is as before,

Q=ny(F,—7,) (11)
but within the space bounded by the solenoid and its plane ends
Q=ny{dnz+V,—7V). (12)

The magnetic potential is discontinuous at the plane ends of the
solenoid, but the magnetic force is continuous.

If 7,, 7,, the distances of the centres of inertia of the positive
and negative plane end respectively from the point (z, 7, 2), are
very great compared with the transverse dimensions of the solenoid,
we may write 7, = i, 7, = i, (13)

"1 T2
where 4 is the area of either section.

The magnetic force outside the solenoid is therefore very small,
and the force inside the solenoid approximates to a force parallel to
the axis in the positive direction and equal to 4wz y.

If the secetion of the solenoid is a cirele of radius e, the values of
¥, and 7, may be expressed in the series of spherical harmonies
given in Thomson and Tait’'s Nalural Philosophy, Art. 546, Ex. IL,
1.17¢ 1.1.3 78

7.2
szw{_rQl—}-a'F%;Qz_-f}iaEQ4+ 2.4.6 o®

e 1.1a¢ 1.1.345 }
- §47—3Q2 21670 Q4—&c.} when 7>a. (13)

Qe+ &c.}when r<a, (14
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In these expressions » is the distance of the point (z,7, 2) from
the centre of one of the cireular ends of the solenvid, and the zonal
harmonies, @,, @,, &c., are those corresponding to the angle 6 which

r makes with the axis of the eylinder.

The first of these expressions is discontinuous when 6 = g, but
we must remember that within the solenoid we must add to the
magnetic force deduced from this expression a longitudinal foree
dmny.

677.] Let us now consider a solenoid so long that in the part
of space which we consider, the terms depending on the distance
from the ends may be neglected.

The magnetic induction through any closed curve drawn within
the solenoid is 4wy 4, where 4’ is the arca of the projection of
the curve on a plane normal to the axis of the solenoid.

If the closed curve is outside the solenoid, then, if it encloses the
solenoid, the magnetic induetion through it is 4wy 4, where 4 is
the area of the section of the solenoid. Tf the closed curve does not
surround the solenoid, the magnetic induction through it is zero.

If a wire be wound %" times round the solenoid, the coefficient of
induction between it and the solenoid is

M=4nnn'd (16)

By supposing these windings to coincide with » windings of the
solenoid, we find that the coeflicient of sclf-induction of unit of
length of the solenoid, taken at a sufficient distance from its ex-
tremities, is L = 4na®4. an

Near the ends of a solenoid we must take into account the terms
depending on the imaginary distribution of magnetism on the plane
ends of the solenoid. The effect of these terms is to make the co-
efficient of induction between the solenoid and a circuit which sur-
rounds it less than the value 4 72 4, which 1t has when the circuit
surrounds a very long solenoid at a great distance from either end.

Let us take the case of two circular and coaxal solenoids of the
same length /. Let the radius of the outer solenoid be ¢, and let
it be wound with wire so as to have »; windings in uuit of length.
Let the radius of the inner solenoid be ¢,, and let the number of
windings in unit of length be #,, then the coetficient of induction
between the solenoids, neglecting the effect of the ends, is

M=0aGg, (18)
where G = 47n, (19)
and g = mey? Ly, (20)
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678.] To determine the effect of the positive end of the solenoids
we must calculate the coefficient of induction on the outer solenoid
due to the circular disk which forms the end of the inner solenoid.
For this purpose we take the second expression for 7, as given
in equation (15), and differentiate it with respect to #. This gives
the magnetie force in the direction of the radius. We then multi) ly
this expression by 2 772 du, and integrate it with respect to p from

z
V2 + e
with respect to a single winding of the cuter solenoid at a distance
*2 from the positive end. We then multiply this by 2z, and
integrate with respect to 2z from z =/ to 2 = 0. Finally, we
multiply the result by #;#,, and so find the effect of one of the
ends in diminishing the coefficient of induction.

We thus find for the value of the coefficient of mutual induction
between the two cylinders,

M = 4n?unyc,2 ([—2¢ a), (21)

p= 0t p= This gives the coeflicient of induction

c4+d—r 1.3 1 ¢? ¢, 3
her _ 2 it 1 — -1
where a =% ( 73)

e T ad sBes
1.3.5 1 ¢t . ¢ e’ L. e .

245 45 (T E s T = ) pke, (22)
where # is put, for brevity, for ViIET o2,

It appears from this, that in calculating the mutual induction of
two coaxal solenoids, we must use in the expression (20) instead of
the true length 7 the corrected length /—2 ¢, o, in which a portion
equal to ac, is supposed to be cut off at each end. When the
solenoid is very long compared with its external radius,

Pt 5 &
a=3+75 , triv 5 +&e (23)
e N

679.] When a solenoid consists of a number of layers of wire of
such a diameter that there are » layers in unit of length, the
number of layers in the thickness ¢r is # dr, and we have

G = 47r/7z2d7‘, and ¢ = wlfﬁ,z r2dr. (24)

If the thickness of the wire is constant, and if the induction take
place between an external coil whose onter and inner radii are # and
¥ respectively, and an inner coil whose outer and inner radii are
7 and z, then, neglecting the effect of the ends,

Gg=4arinln?(e—y) (y*—2%. (25)
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That this may be a maximum, z and z being given, and g
variable 23

4 a;':fé.y_%?. (26)

This equation gives the best relation between the depths of the

primary and secondary coil for an induction-machine without an

iron core.
If there is an iron core of radius z, then & remains as before, but
y:vrl/nz r2+4wxz2)dr (27)
—‘7rln2(”/ +47—xz (/—z))- (28)

If y is given, the value of 2z which gives the maximum value of ¢ is
18 m«k

il vl

‘When, as in the case of iron, « is a large number, z = 3% y, nearly.

(29)

If we now make » constant, and y and 2 variable, we obtain the

maximum value of Gy when
Triy:z::4:3:2. (30)

The coeflicient of self-induction of a long solenoid whose outer
and inner radii are @ and 7, and having a long iron core whose
radius 1s z, is
Y L=37m%{n*(w—y) @+ 22y + 35+ 247k ). (31)

680.] We have hitherto supposed the wire to be of uniform
thickness. We shall now determine the law according to which
the thickness must vary in the different Jayers in order that, for
a given value of the resistance of the primary or the secondary coil,
the value of the coefficient of mutual induction may be a maximum.

Lect the resistance of unit of length of a wire, such that » windings
occupy unit of length of the solenoid, be p#2.

The resistance of the whole solenoid is

R = 2wlfn4rfly'. (32)
The condition that, with a given value of £, ¢ may be a maximum
aG _ ,dI

/ C’l , where C is some constant.
dr dr

1 . .
This gives =% proportional to s or the diameter of the wire of

the exterior coil must be proportional to the square root of the
radius,
In order that, for a given value of £, y may be a maximum

02 = C(r + 4W;KZZ) . (33)
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Ience, if there is no iron core, the diameter of the wire of the
interior coil should be inversely as the square root of the radius,
but if there is a core of iron having a high capacity for magneti-
zation, the diameter of the wire should be more nearly directly
proportional to the square root of the radius of the layer.

- An I'ndless Solenoid.

681.] If a solid be generated by the revolution of a plane area A
about an axis in its own plane, not cutting it, it will have the form
of a ring. If this ring be coiled with wire, so that the windings
of the coil are in planes passing through the axis of the ring, then,
if # is the whole number of windings, the current-function of the

.. 1 . .
layer of wire is ¢= 517 g, where 6 is the angle of azimuth about
m

the axis of the ring.
If Q is the magnetic potential inside the ring and £’ that out-
side, then Q—Q=d4n¢+C=2ny0+C
Outside the ring Q' must satisfy Laplace’s equation, and must
vanish at an infinite distance. From the nature of the problem
it must be a function of 6 only. The only value of Q” which fulfils
these conditions is zero. Ilence .
Q'=o, Q=2ny6+C. ‘
The magnetie force at any point within the ring is perpendicular

to the plane passing through the axis, and is equal to Zny%_

where 7 is the distance from the axis. Outside the ring there is
no magnetic force.

If the form of a closed curve be given by the coordinates z, 7,
and 0 of its tracing point as functions of s, its length from a fixed
point, the magnetic induction through the closed curve is

2n f‘ri@rls
v o 7 ds

taken round the curve, provided the curve is wholly inside the ring.
If the curve lies wholly without the ring, but embraces it, the
magnetic induction through it is
I, z' r' ,
Znyfo 7{15'd8 =2nya

where the accented coordinates refer not to the closed curve, but to
a single winding of the solenoid.

The magnetic induction through any closed curve embracing the
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ring 1is therefore the same, and equal to 2 7y @, where 4 is the linear
qu:intity fo ! ;j ?J;.: ds’. TIf the closed curve does not embrace the
ring, the magnetic induction through it is zero.

Let a second wire be coiled in any manner round the ring, not
necessarily in contact with it, so us to embrace it 7 times. The
induction through this wire is 2z#"ya, and therefore 3, the
coefficient of induction of the one coil on the other, is M = 2 #” 4.

Sinee this is quite independent of the particular form or position
of the second wire, the wires, if traversed by electric currents, will
expericnce no mechanical force acting between them. By meaking
the second wire coincide with the first, we obtain for the coefficient
of self-induction of the ring-coil

L = 2#x%a,
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CHAPTER XIIL

PARALLEL CURRENTS,

Cylindrical Conductors.

682.] Ix a very important class of clectrical arrangements the
current is conducted through round wires of nearly uniform section,
and either straight, or such that the radius of curvature of the axis
of the wire 1s very great compared with the radius of the transverse
section of the wire. In order to be prepared to deal mathematically
with such arrangements, we shall begin with the case in which the
circuit consists of two very long parallel conductors, with two pieces
joining their ends, and we shall confine our attention to a part of
the circuit which is so far from the ends of the conductors that the
fact of their not being infinitely long does not introduce any
sensible change in the distribution of force.

‘We shall take the axis of z parallel to the direction of the con-
ductors, then, from the symmetry of the arrangements in the part
of the field considered, everything will depend on 77, the component
of the vector-potential parallel to 2.

The components of magnetic induction become, by equations (A),

=, (1)

dy

b= M (2)
dr .

c = 0.

For the suke of gencrality we shall suppose the coefficient of
magnetic induction to be u, so that ¢ = pa, & = p B, where a and 8
are the components of the magnetic force.

The equations (E) of electric currents, Art. 607, give

da

dB
== = = = - — 3
% = 0, v = 0, 4w iz~ dy (3)
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683.] If the current is a function of r, the distance from the axis
of 2z, and if we write
z =rcosf, and y = rsind, (4)
and B for the magnetic force, in the direction in which 8 is measured
perpendicular to the plane through the axis of ¢, we have

e L2 g, (5)

1
47w = - -+ ;‘B — ; d——r
If € is the whole current flowing through a section bounded by

dr
a circle in the plane @7, whose centre is the origin and whose
radius is 7, it
0=/ 2arwdr = Y87 (6)
Yo

It appears, therefore, that the magnetic force at a given point
due to a current arranged in cylindrical strata, whose common axis
1s the axis of #, depends only on the total strength of the current
flowing through the strata which lie between the given point and
the axis, and not on the distribution of the current among the
different cylindrical strata.

For instance, let the conductor be a uniform wire of radius e,
and let the total current through it be C, then, if the current is
uniformly distributed through all parts of the section, w will be
constant, and C=mwa’ (7)

The current flowing through a circular section of radius 7, # being
less than @, 18 C’=mwr2. Hence at any point within the wire,

2¢ r
. . C
Outside the wire =2 o (9)

In the substance of the wire there is no magnetic potential, for
within a conductor carrying an clectric current the magnetic force
does not fulfil the condition of having a potential.

Outside the wire the magnetic potential is

Q = 200. (10)

Let us suppose that instead of a wire the conductor is a metal
tube whose external and internal radii are @; and «,, then, it Cis
the current through the tubular conductor,

C = nwla®—af). (11)
The magnetic force within the tube is zero. In the metal of the
tube, where 7 is between o) and a,,,

B = o1 _ (r— 32%), (12)
at—a,? r
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and outside the tube, C
B=2_"s (18)

the same as when the current flows through a solid wire.
684.] The magnetic induction at any point is & = p B8, and since,

by equation (2),
y eq (2) y__ 4 (14)
dr
][:—f’.}.ﬁ(l?‘. (15)
The value of 7 outside the tube is
A—2pu,Clogr, (16)

where p, is the value of  in the space outside the tube, and 4 isa
constant, the value of which depends on the position of the return
current.
In the substance of the tube,
IH=4-2u,Cloga + al'%cazz (aIZ_rz +2a,2 log “11) .17
In the space within the tube /7 is constant, and

T=A—2u,C1 C(14 - 2% 10 %). (18)
= o & log 2y + ( +a12—‘a2 08 “1)
2

685.] Let the circuit be completed by a return current, flowing
in a tube or wire parallel to the first, the axes of the two currents
being at a distance 6. To determine the kinetic energy of the
system we have to calculate the integral

7=} fffﬂw de dy de. (19)

If we confine our attention to that part of the system which lies
between two planes perpendicular to the axes of the conductors, and
distant 7 from each other, the expression becomes

T = llff]fw dz dy. (20}

If we distinguish by an accent the quantities belonging to the
return current, we may write this

#:f/]iw’dx’df+ff][’wdxdy +fwadzt@+ff]l’w’dx’dy’. (21)

Since the action of the current on any point outside the tube is
the same as if the same current had been concentrated at the axis
of the tube, the mean value of H for the section of the return
current 1s 4 —2 p, € log &, and the mean value of H’ for the section
of the positive current is 4" — 2 y, € log b.
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Hence, in the expression for 7, the first two terms may be written
AC'— 2y CC’ log b, and A"C—2p, CC logh.
Integrating the two latter terms in the ordinary way, and adding
the results, remembering that C+ €7 = 0, we obtain the value of
the kinetic energy 7. Writing this $20%, where L is the co-
efficient of self-induction of the system of two conductors, we find
as the value of L for unit of length of the system

2

L b a,?— 3a,2 4 a,t a
== 2pu,lo 2y 2 op L
l Mo 208, ’+ b az—a (@2 — a,2)? a,
a2 — 3a, 4, a’
+3 7 ,2 2 log L. 22
: a? —a,*® +(‘112—“22)2 g“z (22)

If the conductors are solid wires, 4, and «,” are zero, and
2
F=tplog o 4 h ki) (23)
It is only in the case of iron wires that we need take account of
the magnetic induction in calculating their self-induction. In
other cases we may make gy, p, and p” all equal to unity. The
smaller the radii of the wires, and the greater the distance between
them, the greater is the self-induction.

To find the Repulsion, X, between the Two Portions of Wire.

686.]7 By Art. 580 we obtain for the force tending to increase &,
dL
— 1%% e
X=1 77 c?,
=200, (29)
which agrees with Ampére’s formula, when p, = 1, as in air,

687.] If the length of the wires is great compared with the
distance between them, we may use the coefficient of self-induction
to determine the tension of the wires arising from the action of the
current,.

If Z is this tension,

2

Pl s}
Z= dlC

2
— ¢ Ll
.y, {pulog i 2% (25)

In one of Ampére’s experiments the parallel conductors consist
of two troughs of mercury connected with each other by a floating
bridge of wire. When a current is made to enter at the extremity
of one of the troughs, to flow along it till it reaches one extremity

VOL. IT. U
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of the floating wire, to pass into the other trough through the
floating bridge, and so to return along the second trough, the
floating bridge moves along the troughs so as to lengthen the part
of the mercury traversed by the current.

Professor Tait has simplified the electrical econditions of this
experiment by substituting for the wire a floating siphon of glass
filled with mercury, so that the current flows in mereury through-
out its course.

Fig. 40.

This experiment is sometimes adduced to prove that two elements
of a current in the same straight line repel one another, and thus
to shew that Ampére’s formula, which indicates such a repulsion
of collinear elements, is more correet than that of Grassmann, which
gives no action between two elements in the same straight line;
Art, 526.

But it is manifest that since the formulae both of Ampére and of
Grassmann give the same results for closed circuits, and since we
have in the experiment only a closed circuit, no result of the
experiment, can favour one more than the other of these theories.

In fact, both formulae lead to the very same value of the
repulsion as that already given, in which it appears that 4, the
distance between the parallel conductors is an important element.

‘When the length of the conductors is not very great compared
with their distance apart, the form of the value of L becomes
somewhat more complicated.

688.] As the distance between the conductors is diminished, the
value of 7 diminishes. The limit to this diminution is when the
wires are in contact, or when & = al-}-az In this casc

L-_—zllo( “2 +1)- (26)
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This is 2 minimum when g, = a,, and then
L=2(og4+1),
= 27(1.8863),
= 3.7726 L. (27)

This is the smallest value of the self-induction of a round wire
doubled on itself, the whole length of the wire being 2 2.

Since the two parts of the wire must be insulated from each
other, the self-induction can mever actually reach this limiting
value. By using broad flat strips of metal instead of round wires
the self-induction may be diminished indefinitely.

On the Electromotive Force required to produce a Current of Varying
Intensity along a Cylindrical Conductor.

689.] When the current in a wire is of varying intensity, the
electromotive force arising from the induction of the current on
itsell is different in different parts of the section of the wire, being
in general a function of the distance from the axis of the wire
as well as of the time. If we suppose the eylindrical conductor
to consist of a bundle of wires all forming part of the same circuit,
so that the current 1s compelled to be of uniform strength in every
part of the section of the bundle, the method of calculation which
we have hitherto used would be strictly applicable. If, however,
we consider the eylindrical conductor as a solid mass in which
electric currents are free to flow in obedience to electromotive foree,
the intensity of the current will not be the same at different
distances from the axis of the cylinder, and the electromotive forces
themselves will depend on the distribution of the current in the
different ¢ylindric strata of the wire.

The vector-potential 77, the density of the current w, and the
eleetromotive force at any point, must be considered as functions of
the time and of the distance from the axis of the wire.

The total current, C, through the section of the wire, and the total
electromotive force, E, acting round the circuit, are to be regarded
as the variables, the relation between which we have to find.

Let us assume as the value of H,

H = 8+ T+ T, 7% 4 &e. 4 T, 72", (0~
where 8, 7, 7}, &c. are functions of the time.

Then, from the equation

d*H 1dIl (2)
e Y i T

we find —mw =T, +&e+n2T, 72" % (3)
U2
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If p denotes the specific resistance of the substance per unit of
volume, the electromotive force at any point is p w, and this may be
expressed in terms of the electric potential and the vector potential
H by equations (B), Art. 598,

pw=— ‘g - %%I, (%)
or —PW=%+'§:+%+%rz+&c.+%ﬂ". (5)
Comparing the coeflicients of like powers of r in equations

3) and (5),
() and (3) TL=E(%}+%+‘%’°» ®)
=20 Q
=T 2
Hence we may write %9 =— ZZT\: ) (9

690.] To find the total current ¢, we must integrate w over the
section of the wire whose radius is a,

C:zn/awrdr. (11)

0

Substituting the value of mw from equation (3), we obtain
C=—(110*+&c.+nT,a?") (12)

The value of H at any point outside the wire depends only on
the total current C, and not on the mode in which it is distributed
within the wire. Hence we may assume that the value of / at the
surface of the wire is 4C, where 4 is a constant to be determined
by calculation from the general form of the circuit. Putting H=4C
when 7 = a, we obtain

AC = S+ T+ T, a% + &e.+ T, a%™ (13)
2
If we now write % = a, a 1s the value of the conductivity of

unit of length of the wire, and we have
ar 202 427 no® d*T

(= — QE+WW+&C.+(@W+&C.)! (14)
aTl o 42T a® d T
AC—S:T%—am—+WW+&C-+(*£)Z*W+&C. (15)
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Eliminating 7 from these two equations, we find

daC dfs ac a:c dsC
a(4y = qp) ¥ ¥y —ire gp e G
4

: a*c
_U&TG}W +&e. = 0. (186)

If / is the whole length of the circuit, £ its resistance, and £ the
electromotive force due to other causes than the induclion of the
current on itself, gg ¥ Z

= =—7, o= (17)
2 72 3 73 4 74
P=R04 1A+ B — 3 b O L L B e, (1)

The first term, R0, of the right-hand member of this equation
expresses the electromotive force required to overcome the resist-
ance according to Ohm’s law.

The second term, (4 -+4%) ZZ;,

which would be employed in increasing the electrokinetic momentum
of the circuit, on the hypothesis that the current is of uniform
strength at every point of the section of the wire.

The remaining terms express the correction of this value, arising

expresses the electromotive force

from the fact that the eurrent is not of uniform strength at different
distances from the axis of the wire. The actual system of currents
has a greater degree of freedom than the hypothetical system,
in which the current is constrained to be of uniform strength
throughout the section. Ience the electromotive force required
to produce a rapid change in the strength of the current is some-
what less than it would be on this hypothesis.
The relation between the time-integral of the electromotive force
and the time-integral of the eurrent is
2
fEdt:Rdel+Z(A+a;—)C—T1§% ‘;Zng&c. (19)
If the current before the beginning of the time has a constant
value C,, and if during the time it rises to the value €|, and re-
mains constant at that value, then the terms involving the differ-
ential coefficients of C vanish at both limits, and

.f}m = Rdet+Z(A+§) (C,— ), (20)

the same value of the electromotive impulse as if the current had
been uniform throughout the wire.
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On the Qeometrical Mean Distance of Two Figures in a Plane.®

691.] In calculating the electromagnetic action of a current
flowing in a straight conductor of any given section on the current
in a parallel conductor whose section is also given, we have to find

the integral
fffflog 7 dx dy de’dy’,

where dz dy 1s an element of the area of the first section, da’dy” an
element of the second section, and # the distance between these
elements, the integration being extended first over every element
of the first section, and then over every element of the second.

If we now determine a line %, such that this integral is equal to

4, 4,1log 2,

where 4, and 4, are the areas of the two sections, the length of
will be the same whatever unit of length we adopt, and whatever
system of logarithms we use. If we suppose the sections divided
into elements of equal size, then the logarithm of R, multiplied by
the number of pairs of elements, will be equal to the sum of the
logarithms of the distances of all the pairs of elements. Here 2
may be considered as the geometrical mean of all the distances
between pairs of elements. Tt is evident that the value of £ must
be intermediate between the greatest and the least values of 7.

If £, and £y are the geometric mean distances of two figures,
A and B, from a third, C, and if K44 p is that of the sum of the two
figures from C, then

(Ad+B)log R4yp = A log R4+ Blog Rp.
By means of this relation we can determine 2 for a compound
figure when we know £ for the parts of the figure.
692.7 ExaMPLEs.
(1) Let B be the mean distance from the point O to the line
AB. Let OP be perpendicular to 4B, then
AB(log R+1) = APlogOA+ PBlog OB+ OP AOB.

~ P~ 8
Fig. 41.

* Trans, R. 8. Edin., 1871-2.
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(2) For two lines (Kig. 42) of lengths @ and 6 drawn perpendicu-
lar to the extremities of a line of length ¢ and on the same side of it,

ab(2log R+ 3) = (> —(a—5)2) loga/e* + (a— )2 4-¢2loge
+(a® — ¢2) log /0% + 2 4 (B2 —c?) log v/ 67 + 2
—c(a—é&) tan 1a~——é+actan—1a+&ctan_lé-
¢ ¢ c

o

b
Fig. 42.
(8) For two lines, PQ and 228 (Fig. 43), whose dircctions inter-
sect at O,
PQ.2S21log B+ 3) = log PR (20P.0OR sin?0— PE? cos0)
+log @8(20Q.08 50?0 — Q8% cos 0)
—log S (20P.08 sin%0 — P&% cos 0)
—log QR (20Q.0R sin20— QL% cos0) N
—sin0 {OP2, SPR—0Q?. SR+ OR2. PRQ—082. PSQ}.
)

Q
Fig. 43.
{4) For a point O and a rectangle ABCD (Fig. 44). Let OP,

0@, OR, 08, be perpendiculars on the sidos, then
AB.AD (2 1log R+3) = 2.0P.0Qlog O4+2.0Q.0Rlog OB

+2.0R.08log0OC+2.08.0Plog 0D

+ 0P, DOA 4+ 0Q2. AOB

+ OR2. BOC + 082.C0D.

a q 4
S—
R —0 e
c S a
Fig. 44.

IRIS - LILLIAD - Université Lille 1
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(5) Tt is not necessary that the two figures should be different, for
we may find the geometric mean of the distances between every pair
of points in the same figure. Thus, for a straight line of length a,

log B = log a—%,
or R = oe 3,
R = 0.22313a.

(6) For a rectangle whose sides are 2 and 4,

_ a? 62 62 a?
log 2 = log a4+62—%;ﬁlog/\/1+ﬁ—%Plog/\/l+Z§

Y

a

+ % % tan—1
When the rectangle is a square, whose side is a,
logZ =logatilog2 + —731 -2,

B = 0.44705a.

(7) The geometric mean distance of a point from a circular line
is equal to the greater of the two quantities, its distance from the
centre of the circle, and the radius of the circle.

(8) Hence the geometric mean distance of any figure from a
ring bounded by two concentric circles is equal to its geometric
mean distance from the centre il 1t is entirely outside the ring, but
if it is entirely within the ring
a.2log a,—a,?loga,

2 _ 2
2,"—a,

log B = i

5
3

where @, and @, are the outer and inner radii of the ring. & is

in this case independent of the form of the figure within the ring.
(9) The geometric mean distance of all pairs of points in the

ring is found from the equation

3a,2—a,?

2 Pl
a’—a,

a,t a
log Z = loga,— %2—:‘2272 loga_; +1
For a circular area of radius , this becomes
log 2 =loga—4,
or R=aet,
K =0.7788a.
For a circular line it becomes
R =a.
693.] In calculating the coeflicient of sell-induction of a coil of
uniform section, the radius of curvature being great compared with
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693.] SELF-INDUCTION OF A COIL, 297

the dimensions of the transverse scction, we first determine the
geometric mean of the distances of every pair of points of the
section by the method already described, and then we calculate the
coeflicient of mutual induction between two linear conductors of
the given form, placed at this distance apart.

This will be the coefficient of sclf-induction when the total cur-
rent in the coil is unity, and the current is uniform at all points of
the section.

But if there are # windings in the coil we must multiply the
coefficient already obtained by #2, and thus we shall obtain the
coefficient of self-induction on the supposition that the windings of
the conducting wire fill the whole section of the coil.

But the wire is cylindric, and is covered with insulating material,
so that the current, instead of being uniformly distributed over the
section, 1s concentrated in certain parts of it, and this increases the
coeflicient of self-induction. Besides this, the currents in the
neighbouring wires have not the same action on the current in a
given wire as a uniformly 'istributed current.

The corrections arising from these considerations may be de-
termined by the method of the geometric mean distance. They
are proportional to the length of the whole wire of the coil, and
may be expressed as numerical quantities, by which we must
multiply the length of the wire in order to obtain the correction
of the coeflicient of self-induction.

Let the diameter of the wire be 4. It is

covered with insulating material, and wound Q O Q

into a coil. We shall suppose that the sections

of the wires are in square order, as in Fig. 45, Q Q Q
and that the distance between the axis of each .
wire and that of the next is ), whether in O O Q
the direction of the breadth or the depth of
the eoil. D is evidently greater than d. Fig. 45.

‘We have first to determine the excess of

self-induction of unit of length of a cylindric wire of diameter 4
over that of unit of length of a square wire of side D, or

210 2L for the square
& R for the circle

D
=2 (log—d« +%10g2+7§r — 17;1)

2 (10g§ + 0.1380606) -
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The inductive action of the eight nearest round wires on the wire
under consideration is less than that of the corresponding eight
square wires on the square wire in the middle by 2 x (.01971).

The corrections for the wires at a greater distance may be neg-
lected, and the total correction may be written

D
2 (]ogcg + 0.11835)-
The final value of the self-induction is therefore
D J=4
L = n2M+2l(]oge 7 + 0.118.:0) ’

where 7z is the number of windings, and / the length of the wire,
M the mutual induction of two ecircuits of the form of the mean
wire of the coil placed at a distance 22 from each other, where & is
the mean geometric distance between pairs of points of the section.
D is the distance between consecutive wires, and ¢ the diameter
of the wire.
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CIHAPTER XIV.

CIRCULAR CURRENTS.

Magnetic Potential due to a Circular Current.

694.] Tue magnetic potential at a given point, due to a circuit
carrying a unit current, is numerically equal to the solid angle sub-
tended by the circuit at that point; see Arts. 409, 485.

When the circuit is circular, the solid angle is that of a cone
of the second degree, which, when the given point is on the axis
of the circle, becomes a right cone. When the point is not on
the axig, the cone is an elliptic cone, and its solid angle is
numerically equal to the area of the spherical ellipse which it traces
on a sphere whose radius is unity.

This area can be expressed in finite terms by means of elliptic
integrals of the third kind. We shall find it more convenient to
expand it in the form of an infinile series of spherieal harmonies, for
the facility with which mathematical operations may be performed
on the general term of such a series
more than counterbalances the trouble
of calculating a number of terms suffi-
clent, to ensure practical accuracy.

For the suke of generality we shall
agsume the origin at any point on the
axis of the circle, that is to say, on
the line through the centre perpen-
dicular to the plane of the circle.

Let O (TFig. 46) be the centre of the
circle, € the point on the axis which
we assume as origin, / a point on the
circle.

Describe a sphere with C as centre,
and CI{ as radius. The circle will lie
on this sphere, and will form a small circle of the sphere of
angular radius a.

Fig. 46.
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300 CIRCULAR CURRENTS. [694.

Let Cil = c,

OC =b =ccosa,
OH=a=csina.

Let 4 be the pole of the sphere, and Z any point on the axis, and
let CZ=z.

Let & be any point in space, and let O£ = 7, and 4CE = 4.

Let P be the point when CR cuts the sphere.

The magnetic potential due to the circular current is equal to
that due to a magnetic shell of strength unity bounded by the
current. As the form of the surface of the shell is indifferent,
provided it is bounded by the circle, we may suppose it to coincide
with the surface of the sphere.

‘We have shewn in Art. 670 that if 2 is the potential due to a
stratum of matter of surface-density unity, spread over the surface
of the sphere within the small circle, the potential due to a mag-
netic shell of strength unity and bounded by the same circle is

@ = % %(7‘ D).

‘We have in the first place, therefore, to find 2.

Let the given point be on the axis of the circle at Z, then the
part of the potential at Z due to an element d§ of the spherical
surface at P is a5

7P
This may be expanded in one of the two series of spherical har-

monics, i
o CZTS{QO+Q15+&0.+Q,.%+&C.},

or %S{QO+ @t et @ +&c.},
the first series being convergent when z is less than ¢, and the
second when z is greater than c.
Writing d8 =—c?dud,
and integrating with respect to ¢ between the limits 0 and 2,
and with respect to u between the limits cos a and 1, we find

P=zwc{f:cgod#+&e.+§_[@,.@}, 1)

¢ M &
or ]":27r—{/ Qodﬁ+&0-+—4/ Qidﬂ}- 1)
z » 2,
By the characteristic equation of Q,,

i+ 08+ 7 [ —u) =
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1_“2 49,

Hence f Q:du G+ da (2)
This expression fails when ¢ = 0, but since @, = 1,
"1
| Qudp = 1—p. (3)
i

As the function (Z—QT occurs in every part of this investigation we
7

shall denote it by the abbreviated symbol /. The values of @/
corresponding to several values of 7 are given in Art. 698.

We are now able to write down the value of P for any point 2,
whether on the axis or not, by substituting 7 for 2, and multiplying
each term by the zonal barmonic of 6 of the same order. For
P must be capable of expansion in a series of zonal harmonics of 9
with proper coeflicients, When 6 = 0 each of the zonal harmonics
becomes equal to unity, and the point 2 lies on the axis. Hence
the coefficicnts are the terms of the expansion of P for a point on
the axis. We thus obtain the two series

P=27rc{1—p+&+ ey ()Q(f))} (4)

z(z-}-l) P

or P’—2w~{1—u+&c+z(z+1)r U@eOf. W)

695.] We may now find , the magnetic potential of the cireuit,
by the method of Art. 670, from the equation

1d
W= a (Pr). (5)

We thus obtain the two series
sm"’a 7

LU@eO+&e ) (©)
or wr:minza{%:_: @@ O+ ket 5o T,HQ @)@y )} (6)

The series (6) is convergent for all values of 7 less than ¢, and the
series (6”) 1s convergent for all values of » greater than ¢. At the
surface of the sphere, where » — ¢, the two series give the same
value for w when @ is greater than a, that is, for points not
occupled by the magnetic shell, but when 8 is less than a, that is,
at points on the magnetic shell,

o'=ow+im. (7)

=—27r{1—cosa+&e.

If we assume O, the centre of the circle, us the origin of co-

] ™ .
ordinates, we must put a = 3 and the series become
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o==2rf1+ 00+ s+ S0 00 @

, e L3 (25 1) cere
0 = 2”{%;@1(9)*'&0-’*‘(—) m2)7.2nana+l( }’ (8,)

where the orders of all the harmonics are odd *.

On the Potential Energy of two Circular Currents.

696.] Let us begin by supposing the two magnetic shells which
are equivalent to the currents Lo be portions of two concentrie spheres,
their radii being e, and ¢,, of which ¢, is the greater (Fig. 47).
Let us also suppose that the axes of the two shells coincide, and

that q, is the angle subtended by
the radius of the first shell, and a,
the angle subtended by the radius
of the second shell at the centre C.

Let w; be the potential due to the
first shell at any point within it, then
the work required to carry the second
shell to an infinite distance is the
value of the surface-integral

dw,
Fig. 47. U= —./-./.W a8

extended over the second shell. Hence

M f ;2“ 02 d:”?r

47 sin? ay ¢, { ’(ay) fQ(az)d%+&c 4% (alf Q( a2)d“2}
or, substituting the va]ue of the integrals from equatlon (2), Art. 694,

M= ot aysinaye {3 2 QU () Q) ) +&e. + s 2006000 |

(41

* The value of the solid angle subtended by a circle may be obtained in a more
direct way as follows.—

The solid angle subtended by the circle at the point Z in the axis is easily shewn
to be om (1 Z—ccosa
= "( T HZ

Expanding this expression in spherical harmonics, we find

w =27 { (cosa—1) +(Q, (s) cos a— Q, (a)) E +&c. + (@ (@) cosa— @y, (u.))z;;+ &e. } .
S +1

W =% { (R (@) cosa—@; (a))g +&c. + (Q; (a) cosa—Q; ., (a)) :“—1 +&C.} )

for the expansions of o for points on the axis for which z is less than ¢ or greater
than c respectively. Remembering the equations (42) and (43) of Art. 132 (vol. i.
p- 165), the coefficients in these equations are evidently the same as those we have
now obtained in a more convenient form for computation.
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697.] Let us next suppose that the axis of one of the shells is
turned about € as a centre, so that it now makes an angle 6 with
the axis of the other shell (Fig. 48). We have only to introduce
the zonal harmonies of 8 into this expression for 37, and we find for
the more general value of 3,

M =4n?sin’a,sin? azcz{% % @y (a7) @1 (a5) @5 (0) + &e.
1
Ty o ) Q) 200}
This is the value of the potential energy due to the mutual
action of two circular currents of unit strength, placed so that
the normals through the centres of the circles meet in a point C
in an angle 8, the distances of the circumferences of the circles from
the point ¢ being ¢, and ¢,, of which ¢, is the greater.
If any displacement dx alters the value &
of M, then the force acting in the direc-
aM
de
For instance, if the axis of one of the
shells is free to turn about the point C,
so as to cause 0 to vary, then the moment ,
of the force tending to increase 6 is @,
where amMm 3
0= 5" Fig. 48.

Performing the differentiation, and remembering that

‘Z%'g@ = —sin 4 @,/ (6),

where @," has the same signification as in the former equations,

©®© = —47?sin?a;sin®aq, sin O ¢, { i g—% Q1 (a;) @y (a) @y (6) + &e.
1

+

tion of the displacement is X =

e o U@ ]
698.] As t'e values of @, oceur frequently in these calculations
the following table of values of the first six degrees may be useful.
In this table u stands for cos 8, and » for sin 6.
Ql,: 1,
Qz’z 31,
Q=2 (5ui—1) = 6 (u2—} %),
= Eu (Tt —38) = 10 u(ut =527,
J= 12 (21 pt—14p?41) = 15 (=3 pdv? 4+ 4 04),
Q= % p(33 4 —30 p2 1 5) = 21 pu (' —§ p w8+ £21).
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699.] It is sometimes convenient to express the series for M in
terms of linear quantities as follows :—

Let a be the radius of the smaller circuit, 4 the distance of its
plane from the origin, and ¢ = +/a?+ &2,

Let 4, B, and C be the corresponding quantities for the larger
circuit.

The series for A7 may then be written,

M=1.27" —azcoso

63
p
+ 2.3.%2 AC? a2} (cos? 8 — 4 sin?0)
A2(R2_.1 42 -'
+3.4.72 ( o 4 )a2 (6% —1 a?)(cos®d— £ sin? @ cos 6)
+ &e.

If we make 8 = 0, the two circles beecome parallel and on the
same axis. To determine the attraction between them we may
differentiate 3/ with respect to 6. We thus find

am p A2a? B B2 142
=" o {235+234 p }

700.] In calculating the effect of a coil of rectangular section
we have to integrate the expressions already found with respect
to 4, the radius of the coil, and B, the distance of its plane from
the origin, and to extend the integration over the breadth and
depth of the coil.

In some cases direct integration is the most convenient, but
there are others in which the following method of approximation
leads to more useful results.

Let P be any function of z and 7, and let it be required fo find
the value of P where

+ix +3¥
}’:q/ _.f P(Z.z:dy.

In this expression P is the mean value of P within the limits of
integration.

Let P, be the value of P when # = 0 and y = 0, then, expanding
P by Taylor’s Theorem,

dP, APy | 0P
P=lotosy, t9 g i or

Integrating this expression between the limits, and dividing the
result by zy, we obtain as the value of 2,

+ &e.
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L B*P, AP,

P=P,+ (2 gt Y &
at P, d*P, d*P,
+ o0 (”4 P +y* " )+ sre e’ y? dot dy? + &e.

In the case of the coil, let the outer and inner radii be 4+31 &,
and 4 —4% ¢ respeetively, and let the distance of the planes of the
windings from the origin lie between B+ 47 and B—1%y, then the
breadth of the coil is 7, and its depth & these quantities being
small eompared with A or C.

In order to caleulate the magmstic effeet of such a coil we may
write the sucecssive terms of the series ag follows :—

, B 242 B2, 42

Gy= w51+ dc—g—E—t5n")

, A2 2 _ B 4 B2 4
(’122”’03(”?%(?““@)5”% cr )

A*B 2 25 3547 4B%— 342
G2=3WT(1+~2}1(23~@+_07)62+7517 C;#Uz >

A2(B2_34%) o g2

G,=47 o +ﬂ—cﬁ{U%sB?—lez)Jr35A2B2(5A2——4B2)}
-+ 2772 g—fl{3A202(5A2—44132)+63A2B2(4B2—AQ)},
&e., &e. ;
g= mo + 7w,
g, = 2ma%b +imbee,
g0 = 8ot (=Lt + T8 QI —3a%) Lo,
&e., &e.

The quantities Gy, Gy, G,, &c. belong to the large coil. The
value of w at points for which 7 is less than C is
0 =—27+2G,— G, rQ, (8)— G,r* @, (6)—&e.
The quantitics gy, g5, &c. belong to the small eoil. The value of
o’ at points for which # is greater than ¢ is

, 1 1
w = -917_7 Q. (0)'*'92773 Q: (0) +&e.

The potential of the one coil with respect to the other when the
total current through the section of each coil is unity is

M= G 9,0, (8)+ G, g; Q2 (6) + &e.

1o find M by Elliptic Inicgrals.

701.]7 When the distance of the circumferences of the two circles
YOL. 1I. X
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is moderate as compared with the radii of the smaller, the series
already given do not converge rapidly. In every case, however,
we may find the value of M for two parallel circles by elliptie
integrals.

For let & be the length of the line joining the centres of the circles,
and let this line be perpendicular to the planes of the two circles,
and let A4 and a be the radii of the circles, then

_ff‘L“dds

the integration being extended round both curves.
In this case,

2= A2+ a?+46%2—2 Aa cos (p—¢’),
€e=¢—¢, ds = add, ds’— A d¢’,
f“/“ dacos(p—¢)dpdd’
M= — " _
VAT Y a ¥ 2 —24a cos(¢p— (p)
= 2#“%{(6 — g)F—}— 7E’}’
¢
VAo o
J(A+a) e
and F and Z are complete elliptic integrals to modulus c.

From this we get, by differentiating with respect to & and re-
membering that ¢ 1s a function of 4,

d ]l[ 4 mwhet
T N da(1—cE)
If », and 7, denote the greatest and least values of 7,
= (d+a)?+ 82, 72 = (A—a)? 482,

where c =

{F(l +e2)— F(1—c?)}.

and if an angle y be taken such that cosy = :l ,
1
dM _ bsiny
& =" da
where ¥, and F, denote the complete elliptic integrals of the first
and second kind whose modulus is sin y.

{2F,—(1+sect ) By},

/

If 4d=a, coty= 54" and
aM
db

.. aM .
The quantity 7 represents the attraction between two parallel

= 27cosy {2F,—(1+sec?y) £, }.

circular currents, the current in each being unity.
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Seeond Expression for M.

An expression for M, which is sometimes more convenient, is got

. T —7y . .
by making ¢, = 1+ 2, in which case
.

117

M=an/da (F,—F
o L=l

Do draw the Lines of Magnetic Force for a Circular Current.

702.7 The lines of magnetic foree are evidently in planes passing
through the axis of the eircle, and in each of these lines the value
of M is eonstant.

in 6
Calculate the value of K; = Sih

(ﬁsmy - -Esmo}
tables for a sufficient number of values of 4.
Draw reetangular axes of # and 2z on the paper, and, with centre
at the point # = §a(sind-+cosecd), draw a circle with radius
4 a{eosec 0 —sin §). For all points of this eircle the value of ¢, will

from TLegendre’s

be sin 4. Henee, for all points of this ecircle,

M=1an/da— —, and A:-Lﬂg-
,\/Kg 1672 a

Now 4 is the value of # for which the value of # was found.
Hence, if we draw a line for which = 4, 1t will cut the circle
in two points having the given value of 3.

Giving A/ a series of values in arithmetical progression, the
values of 4 will be as a series of squares. Drawing therefore a
series of lines parallel to 2, for which z has the values found for 4,
the points where these lines cut the circle will be the points where
the corresponding lines of force cut the circle.

If we put m = 4 wa, and 3 — nm, then

Ad=a = nng a.
We may call z the index of the line of force.

The forms of these lines are given in Fig. XVIIT at the end of
this volume. They are copied from a drawing given by Sir W,
Thomson in his paper on ¢ Vortex Motion *.’

703.] If the position of a circle having a given axis is regarded
as defined by &, the distance of its centre from a fixed point on
the axis, and @, the radius of the circle, then A7, the coefficient
of induction of the ecircle with respect to any system whatever

* Trans. K. 8., Edin., vol. xxv. p. 217 (1869).
X2
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of magnets or currents, is subject to the following equation
M dPM 1dH 1)
dar T ade

To prove this, let us consider the number of lines of magnetic
force cut by the circle when @ or & is made to vary.

(1) Let a become @+3e, & remaining constant. During thig
variation the circle, in expanding, sweeps over an annular surface
in its own plane whose breadth is 3a.

If 7 is the magnetic potential at any point, and if the axis of ¥
be parallel to that of the circle, then the magnetic force perpen-

dicular to the plane of the ring is %

To find the magnetic induction through the annular surface we

have to integrate 2w av
/ ada—-

0 dy

where 6 is the angular position of a point on the ring.

But this quantity represents the variation of M due to the
am

variation of , or —6a Hence

da
2m
dM / (l? g ()

de,

(2) Let & become 6+66, a remmmng constant. During this
variation the circle sweeps over a cylindric surface of radius @ and
length 84.

The magnetic force perpendicular to this surface at any point is

g where 7 is the distance from the axis. Hence

dr
aMm fz" av
b il 3
o 0 ao. (3)

dr
Differentiating equation (2) with respect to «, and (3) with
respect to &, we get

2 2 T 2

dJ[ f dVda / ;zr: )

dcw =_f(,2" :2%49, 2

T N ©)
S

Transposing the last term we obtain equation (1).
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Cocefficient of Induction of Two Parallel Circles when the Distance
between the Ares is Small compared with the Radius of either
Circle.

704.] We might deduce the value of A in this case from the
expansion of the elliptic integral already given when its modulus
is nearly unity. The following method, however, is a more direct
application of electrical prineiples.

First Approzimation.

Let 4 and 2 be the radii of the circles, and & the distance between
their planes, then the shortest distance
between the ares is

We have to find 3, the magnetic &
induction through the circle 4, due to a
unit current in 2 on the supposition that
7 is small compared with 4 or a.

We shall begin by calculating the
magnetic induction through a cirele in Fig. 49.
the plane of 2 whose radius is a—e¢, ¢ being a quantity small com-
pared with a (Fig. 49).

Comnsider a small element ds of the circle @. At a point in the
plane of the circle, distant p from the middle of ds, measured in
a direction making an angle 6 with the direction of ds, the magnetic
force due to ds is perpendicular to the plane, and equal to

A

1 .
~ sin @ ds.
P

If we now caleulate the surface-integral of this force over the
space which lies within the circle @, but outside of a circle whose
centre is ds and whose radius is ¢, we find it

L4 2asinf
f f ,,12 sinf@dsd0dp = {log8a—logec—2}ds.
0 Je p

If ¢ is small, the surface-integral for the part of the annular space
outside the small circle ¢ may be neglected.

‘We then find for the induction through the circle whose radius
is a—c¢, by Integrating with respect to ds,

My, = 47a {log8a—loge—2},

provided ¢ 1s very small compared with a.

Since the magmnetic foree at any point, the distance of which
from a curved wire is small compared with the radius of curvaturei
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is nearly the same as if the wire had been straight, we can caleulate
the difference between the induction through the cirele whose
radius 18 @ —¢, and the circle 4 by the formula
Mo—M,, = 47a{loge—logr}.
Hence we find the value of the induction between 4 and & to be
My, = 4wa(log8 a—logr—2)
approximately, provided 7 is small compared with a.

705.] Since the mutual induction between two windings of the
same coil 1s a very important quantity in the caleulation of ex-
perimental results, I shall now deseribe a method by which the
approximation to the value of M for this case can be carried to any
required degree of accuracy.

We shall assume that the value of 3 is of the form

ﬂ[=4w{Alog8_“+.B},
where A4 = a+Alz+A2— A' +A 2+A' +&e,

and B_—2a+Bw+B +B’ +]5’3 Z+B’ +&c

where ¢ and @+« are the radu of the circles, and 7 the distance
between their planes.

‘We have to determine the values of the coefficients 4 and B.
1t is manifest that only even powers of y ean oceur in these quan-
tities, because, if the sign of » is reversed, the value of M must
remain the same,

‘We get another set of conditions from the reciprocal property
of the coefficient of Induction, which remains the same whichever
circle we take as the primary circuit. The value of 37 must there-
fore remain the same when we substitute ¢+« for 2, and —z for 2
in the above expression.

‘We thus find the following conditions of reciprocity by equating
the coefficients of similar combinations of z and ,

AIZI—AI, Blz 1—2—B1,
Ay = — A, — 4, s =3—34,+4,—B, — B,
A:{:-—AZ’—A;, _B’ A, _B’ B’.
(—)rd, =4,+(n—2) 43+ (n— 2)(2 )A +&e. + 4,
"By=— ot A "4
(=) Ba=— + — 4~ —)duy

+B,+(n—2) B, + (-_1(2—”,_323 +&e. + B,
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From the general equation of A, Art. 708,
a*M aEM 1 dM 0
de2 T dyz’?—a-{-z‘a’—w—'_

3

we obtain another set of conditions, )
24,424, = 4,,
24,424+ 6 Ay +24°3=24,;
n(a—~NA,+n4+1)nd, +1.24, 4124, , =nd,
(n—1)(n—2) A +n(n—1)4 1 +2.3 47, +2.34",,,=(n—2)4,,
&e. ;
14,4 A, =2B,+28,— B =44,
6 Ay 434, =28 ,+6B,+2 0, = 64,134,
(2n—1)4,+(2n+2)4,,,
=an—-2)B, 4@+ 1B, +1.28 +1.2F8 .
Solving these equations and substituting the values of the co-
efficients, the series for A becomes

8a z 2?4 3y% 2% 3xy°
ﬂ[=4vmlog—r—{1 +%; * l(iazy - 32@3./ +&c.}
z 322—y? 23 —62y?
—2—3— T — &e.
+4’n’d{ 2 2@—{-—- T6a? 48a3 + C}

To find the form of a coil for whick the cocfficient of self-in-
duction i3 & mazimum, the total lemgth and thickness of the
wire being given.

706.] Omitting the corrections of Art. 705, we find by Art. 673
; 8a
L= 47rn2a(log'~R— —2),

where # is the number of windings of the wire, 2 is the mean
radius of the coil, and Z is the geometrical mean distance of the
transverse section of the coil from itself. See Art. 690. If this
section is always similar to itself, £ is proportional to its linear
dimensions, and » varies as £2.

Sinee the total length of the wire is 2 wa#n, a varies inversely
as n. Hence

an 9 ar i da 0 dR
n R’ and o=~ R’
and we find the condition that Z may be a maximum

]og%:—_ z.
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If the transverse section of the coil is circular, of radius ¢, then,

by Art. 692,

— 1
10g e = 1

and log S?Q = 12,

whence a = 3.22¢;
or, the mean radius of the coil should be 3.22 times the radius of
the transverse section of the coil in order that such a coil may have
the greatest coeflicient of self-induction. This result was found by
Gauss *.

If the channel in which the coil is wound has a square transverse
section, the mean diameter of the coil should be 3.7 times the side
of the square section. .

* Werke, Gottingen edition, 1867, vol. v. p. 622.
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CHAPTER XV.

ELECTROMAGNETIC INSTRUMENTS.

Galvanometers.

707.7 A GALvANOMETER is an instrument by means of which an
electric current is indicated or measured by its magnetic action.

When the instrument is intended to indicate the existence of a
feeble current, it is called a Sensitive Galvanometer.,

When it is intended to measure a current with the greatest
accuracy in terms of standard units, it is ealled a Standard Galva-
nometer,

All galvanometers are founded on the principle of Schweigger’s
Multiplier, in which the current is made to pass through a wire,
which is coiled so as to pass many times round an open space,
within which a magnet is suspended, so as to produce within this
space an clectromagnetic foree, the intensity of which is indicated
by the magnet.

In sensitive galvanometers the coil is so arranged that its
windings occupy the positions in which their influence on the
magnet is greatest. They are therefore packed closely together
m order to be near the magnet.

Standard galvanometers are constructed so that the dimensions
and relative positions of all their fixed parts may be accurately
known, and that any small uncertainty about the position of the
moveable parts may introduce the smallest possible error into the
calculations.

In constructing a sensmve galvanometer we aim at making the
field of (}l(,(’t]'()rndg‘nLtl(, force in which the magnet is suspended as
intense as possible. In designing a standard galvanometer we
wish to make the field of elcetromagnetic force near the magnet
as uniform as possible, and to know its exact intensity in terms
of the strength of the current.
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314 ELECTROMAGNETIC INSTRUMENTS. [708.

On Stapdard Galvanometers.,

708.] In a standard galvanometer the strength of the current
has to be determined from the force’ which it exerts on the sus-
pended magnet. Now the distribution of the magnetism within
the magnet, and the position of its centre when suspended, are not
capable of being determined with any great degree of accuracy.
Hence it is necessary that the coil should be arranged so as to
produce a field of force which is very nearly uniform throughout
the whole space occupied by the magnet during its possible motion.
The dimensions of the coil must therefore in general be much larger
than those of the magnet.

By a proper arrangement of several coils the field of force within
them may be made much more uniform than when one coil only
is used, and the dimensions of the instrument may be thus reduced
and its sensibility increased. The errors of the linear measurements,
however, introduce greater uncertainties into the values of the
electrical constants for small instruments than for large ones. It
1s therefore best to determine the electrical constants of small
instruments, not by direet measurement of their dimensions, but
by an electrical comparison with a large standard instrument, of
which the dimensions are more accurately known ; see Art, 752.

In all standard galvanometers the coils are circular, The channel
in which the coil is to be wound is carefully turned. Its breadth

Fig. 50.

is made equal to some multiple, #, of the diameter of the covered
wire. A hole is bored in the side of the channel where the wire is
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to enter, and one end of the covered wire is pushed out through
this hole to form the inner connexion of the coil. The channel is
placed on a lathe, and a wooden axis is fastened to it; see Fig. 50.
The end of a long string is nailed to the wooden axis at the same
part: of the circumference as the entrance of the wire. The whole
is then turned round, and the wire is smoothly and regularly laid
on the bottom of the channel till it is completely covered by =
windings. During this process the string has been wound » times
round the wooden axis, and a nail is driven into the string at the
nth turn. The windings of the string should be kept exposed
so that they can ecasily be counted. The external circumference
of the first layer of windings is then measured and a new layer
is begun, and so on till the proper number of layers has been
wound on. The use of the string is to count the number of
windings. If for any reason we have to unwind part of the coil,
the string is also unwound, so that we do not lose our reckoning
of the actual number of windings of the coil. The nails serve
to distinguish the number of windings in each layer.

The measure of the eircumference of each layer furnishes a test
of the regularity of the winding, and enables us to calculate the
electrical constants of the coil. For if we take the arithmetic mean
of the cireumferences of the chanmel and of the outer layer, and
then add to this the circumferences of all the intermediate layers,
and divide the sum by the number of layers, we shall obtain the
mean circumference, and from this we can deduce the mean radius
of the coil. The circumference of each layer may be measured by
means of a steel tape, or better by means of a graduated wheel
which rolls on the coil as the coil revolves in the process of
winding. The value of the divisions of the tape or wheel must
be aseertained by comparison with a straight scale.

709.] The moment of the force with which a unit current in
the coil acts upon the suspended apparatus may be expressed in
the series Gy g, 5in 04 G, g,sin 0 Q.7 (8) + &e.,
where the coefliclents G refer to the coil, and the coeflicients g to
the suspended apparatus, 8 being the angle between the axis of
the coil and that of the suspended apparatus ; see Art. 700.

When the suspended apparatus is a thin uniformly and longitud-
inal]ly magnetized bar magnet of length 2/ and strength unity,
suspended by its middle,

9= 21, g =0, g;= 2[3, &e.
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The values of the coefficients for a magnet of length 2/ magnetized
in any other way are smaller than when it is magnetized uni-
formly.

710.] When the apparatus is used as a tangent galvanometer,
the coil is fixed with its plane verlical and parallel to the direction
of the earth’s magnetic force. The equation of equilibrium of the
magnet is in this case

mgy Heos = mysinf {G g+ Gyg, Q) (6) + &e.},
where 7 g, 1s the magnetic moment of the magnet, /7 the horizontal
component of the terrestrial magnetic force, and y the strengih
of the current in the eoil. When the length of the magnet is
small compared with the radius of the coil the terms after the first
in G and g may be neglected, and we find
ry= %[1 cot 0.

The angle usually measured is the deflexion, 8, of the magnet
which is the complement of 6, so that cot 0 = tan?.

The current is thus proportional to the tangent of the deviation,
and the instrument is therefore called a Tangent Galvanometer.

Another method ie to make the whole apparatus moveable about
a vertical axis, and to turn it till the magnet is in equilibrium with
its axis parallel to the plane of the coil. If the angle between the
plane of the coil and the magnetic meridian is 3, the equation of
equilibrium is
mg, Hsing = Myyl (G —2Gyg, + &e.} s

H .
Y = (—Gl—_—&o—) sin §.

Since the current is measured by the sine of the deviation, the
instrument when used in this way is called a Sine Galvanometer.

The method of sines can be applied only when the current is
so steady that we can regard it as constant during the time of

whence

adjusting the Instrument and bringing the magnet to equi-
librium.

711.] We have next to consider the arrangement of the coils
of a standard galvanometer.

The simplest form is that in which there is a single coil, and
the magnet is suspended at its centre.

Let 4 be the mean radius of the coil, ¢ its depth, n its breadth,
and 7 the number of windings, the values of the coeflicients are
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Y 27n 2 2
6="Fhent 15}
GZZO,

T 2 2
G, = — 13{1+,5 —g%}
G, =0, &e.

The principal correction is that arising from G,. The series
G+ Gy5 @ (0)

becomes Gy (1 % (cos2 0 — % sin? 6))

1
?Az

The factor of correction w111 d1ﬁ’cr most from unity when the
magnet is uniformly magnetized and when ¢ = 0. In this case it
beecomes 1—3% le; Tt vanishes when tan 8 = 2, or when the de-
flexion is tan=' 4, or 26°34". Some observers, therefore, arrange
their experiments so as to make the observed deflexion as near
this angle as possible, The best method, however, is to use a
magnet 50 short compared with the radius of the coil that the
correction may be altogether neglected.

The suspended magnet is carefully adjusted so that its centre
shall coincide as nearly as possible with the centre of the coil. If,
however, this adjustment is not perfect, and if the coordinates of
the centre of the magnet relative to the centre of the coil are z, 7, 2,
z being measured parallel to the axis of the coil, the factor of

s Xyt —22?
A )

‘When the radius of the coil is large, and the adjustment of the
magnet carefully made, we may assume that this correction is
insensible,

correction 1s (1 4320

Gaugain’s Arrangement.

712.] In order to get rid of the correction depending on @,
Gaugain constructed a galvanometer in which this term was ren-
dered zero by suspending the magnet, not at the centre of the
coil, but at a point on the axis at a distance from the centre equal
to half the radius of the coil. The form of G, is
Az (BZ 1 Az)

o

and, since in this arrangement B = 4 4, G, = 0.

G3:4

This arrangement would be an improvement on the first form
if we could be sure that the centre of the suspended magnet is
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exactly at the point thus defined. The position of the centre of the
magnet, however, is always uncertain, and this uncertainty intro-
duces a factor of correction of unknown amount depending on ¢, and

of the form (1 —%%), where z is the unknown excess of distance
of the centre of the magnet from the plane of the coil. This
correction depends on the first power Ofg . Hence Gaugain’s coil

with eccentrically suspended magnet is subject to far greater un-
certainty than the old form,

Helmholtz’s Arrangement.

713.] Helmholtz converted Gaugain’s galvanometer into a trust-
worthy instrument by placing a second coil, equal to the first, at
an equal distance on the other side of the magnet. _

By placing the coils symmetrically on both sides of the magnet
we get rid at once of all terms of even order.

Let 4 be the mean radius of either coil, the distance between
their mean planes is made equal to 4, and the magnet is suspended
at the middle point of their common axis. The coeflicients are

167n 1 £2

— _ 1l >
6= /a0 =" p)
G, =0,

™R

Gy = 0.0512 — " (31 £% — 3672
: W )
G4=0,
G, = —0.73728 ",

where # denotes the number of windings in both coils together.

It appears from these results that if the section of the coils be
rectangular, the depth being £ and the breadth 7, the value of
G5, as corrected for the finite size of the section, will be small, and
will vanish, if £ is to n as 36 to 31.

It is therefore quite unnecessary to attempt to wind the coils
upon a conieal surface, as has been done by some instrument makers,
for the conditions may be satisfied by coils of rectangular section,
which can be constructed with far greater accuracy than coils
wound upon an obtuse cone.

The arrangement of the coils in Helmholtz’s double galvanometer
is represented in Fig. 54, Art. 725.
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The field of force due to the double coil is represented in section
in Fig. XTIX af the end of this volume.

Galvanometer of Four Coils.

714.] By combining four coils we may get rid of the coefficients
Gy, Gy, Gy, G5, and G,. For by any symmetrical eombinations
we get rid of the coefficients of even orders Let the four coils
be_parallel circles belonging to the same sphere, corresponding
to angles 0, ¢, 7—¢, and 7 —6.

Let the number of windings on the first and fourth coil be #,
and the number on the second and third pn. Then the condition
that @, = 0 for the combination gives

#sin? 0 Q5 (0)+ pnsin® ¢ Q4 ($) = 0, (1)

and the condition that G5 = 0 gives
nsin? 0 @, (0)+ prsin? ¢ Q. () = 0, (2)
Putting sin?f = and sin? ¢ =y, (3)

and expressing @, and @, (Art. 698) in terms of these quantities,
the equations (1) and {2) become

dz—522+dpy—5py: = 0, (4)
8z—2822+212% + Bpy—28 py? 4 21 py® = 0. (5)

Taking twice (4) from (5), and dividing by 3, we get
622 —72°+6 pyi—7py® = 0. (8)

Hence, from (4) and (6),
r 52—4 2*27x—6
p = - — = a5 ?
y 4—5y y 67y
and we obtain
72—6 32 T7x—6
=% P= o e
5x—4 49z (52—4)°
Both # and y are the squares of the sines of angles and must
therefore lie between 0 and 1. Ilence, either z is between 0 and %,
in which case # is between § and 1, and p between o= and 4§,
or else # is between § and 1, in which case 7 is between 0 and
4%, and p between 0 and 2%.

¥

Galvanometer of Three Coils.

715.] The most convenient arrangement is that in which » = 1.
Two of the coils then coincide and form a great circle of the sphere
whose radius is €. The number of windings in this compound
coil is 64. The other two coils form small circles of the sphere.
The radius of each of them is /4 €. The distance of either of
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them from the plane of the first is 4/2 . The number of windings
on each of these coils is 19.
. 120
The value of G| is -

This arrangement of coils is represented in Fig. 51.

Fig. 51.

Since in this three-coiled galvanometer the first term after ¢
which has a finite value is G, a large portion of the sphere on
whose surface the coils lic forms a field of force sensibly uniform.

If we could wind the wire over the whole of a spherical surface,
as described in Art. 627, we should obtain a field of perfectly
uniform force. It is practically impossible, however, to distribute
the windings on a spherical surface with sufficient accuracy, even’
if such a coil were not liuble to the ohjection that it forms a closed
surface, so that its interior is inaccessible.

By putting the middle coil out of the circuit, and making the
current flow in -opposite directions through the two side coils, we
obtain a field of force which exerts a nearly uniform action in
‘the direction of the axis on a magnet or coil suspended within it,
with its axis eoinciding with that of the coils; see Art. 673. For
in this case all the coefficients of odd orders disappear, and since

p=+%, Qf=3u(Tp?—3)=0.
Hence the expression for the magnetic potential near the centre

of the coil becomes
7-6

o =~/Friy{s g QO + 7 5 Q0+ &o .
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On the Proper Thickness of the Wire of a Galvanometer, the External
Resistance being given.

716.] Let the form of the channel in which the galvanometer
coil 1s to be wound be given, and let it be required to determine
whether it ought to be filled with a long thin wire or with a shorter
thick wire.

Let 7 be the length of the wire,  its radius, y+6 the radius
of the wire when covered, p its specific resistance, g the value of
G for unit of length of the wire, and 7 the part of the resistance
which is independent of the galvanometer.

The resistance of the galvanometer wire is

—rt
=
The volume of the coil is
V=4I(y+6)
The electromagnetic force is y @, where y is the strength of the

current and G =gl
If £ is the electromotive force acting in the cireuit whose
resistance is £+, B =y(R+7).
The electromagnetic force due to this electromotive force is
G
£
Ryr’

which we have to make a maximum by the variation of 7 and /.
Inverting the fraction, we find that
p 1 7
mgy® ¥ gl
is to be made a minimum. Hence
pdy rdl
2- 3 2
TY A
If the volume of the coil remains constant
dl dy
T + 2 7+ 7 =
Eliminating 47 and dy, we obtain
pytl_ 7
A
r 7+0

0.

or R = y
Hence the thickness of the wire of the galvanometer should be
such that the external resistance is to the resistance of the gal-
vanometer coll as the diameter of the covered wire to the diameter
of the wire itself.
VOL. 1I. Y
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On Sensitive Galvanomerters.

717.] In the construction of a sensitive galvanometer the aim
of every part of the arrangement is to produce the greatest possible
deflexion of the magnet by means of a given small electromotive
force acting between the electrodes of the coil.

The current through the wire produces the greatest effect when
it is placed as near as possible to the suspended magmnet. The
magnet, however, must be left free to oscillate, and therefore there
is 4 certain spacc which must be left empty within the eoil. This
defines the internal boundary of the coil.

Outside of this space each winding must be placed so as to have
the greatest possible effect on the magnet. As the number of
windings increases, the most advantageous positions become filled
up, so that at last the increased resistance of a new winding
diminishes the effect of the current in the former windings more
than the new winding itsell adds to it. By making the outer
windings of thicker wire than the inner ones we obtain the greatest
magnetic effect from a given electromotive foree.

718.7 We shall suppose that the windings of the galvanometer
are circles, the axis of the galvanometer passing through the centres
of these circles at right angles to their planes.

Let rsind be the radius of one of these circles, and #cos @ the
distance of its centre from the centre of the galvanometer, then,
if / is the length of a portion of wire coinciding with this circle,

and y the current which flows in it, the
magnetic force al the centre of the gal-
vanometer resclved in the direction of

the axis 1s sin @
vl
If we write 12 = 2% s5in 0, (1)

. . ‘
this expression becomes y —; -
z

Hence, if a surface be constructed
similar to those represented in section
in Fig. 52, whose polar equation is

7% = 2% 8in 0, (2)
where 2, 1s any constant, a given length
of wire bent into the form of a circular
arc will produce a greater magnetic
effect swhen 1t lies within this surface ihan when it lies outside it.

TFig. 52.
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Tt follows from this that the outer surface of any layer of wire
ought to have a constant value of #, for if = Is greater at one place
than another a portion of wire might be transferred from the first
place to the second, so as to increase the force at the centre of the

galvanometer.,
The whole force due to the coil is y G, where
de
G = 42 (3)

the integration being extended over the whole length of the wire,
z being considered as a function of /.

719.] Let y be the radius of the wire, its transverse section will
be wz%. Let p be the specific resistance of the material of which
the wire is made referred to unit of volume, then the resistance of a

length { is %’: , and the whole resistance of the coil is
7

2
dl
R:;ff?, (1)

where 7 is considered a function of Z.

Let Y2 be the area of the quadrilateral whose angles are the
sections of the axes of four neighbouring wires of the coil by a
plane through the axis, then 727 is the volume occupied in the coil
by a length 7 of wire together with its insulating covering, and
including any vacant space necessarily left between the windings
of the coil. Hence the whole volume of the coil is

V=fY2 d, (5)

where ¥ is considered a function of Z.
But since the coil is a figure of revolution

V= 27rffr2sin0drd6, (6)

or, expressing 7 in terms of z, by equation (2),
V= 2ﬁffx2 (sin )% dz d0. (7

Now 27 f "(sin 6)% 49 is a numerical quantity, call it , then
0
V=4 Nad—F, (®)
where 7, is the volume of the interior space left for the
magnet,
Let us now consider a layer of the coil contained between the

surfaces o and z+ dz.
Y 2
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The volume of this layer is
AV = Nz?de = Y2 dl, 9)
where @/ is the length of wire in this layer.
This gives us @/ in terms of do. Substituting this in equations

(3) and (4), we find
) ) dG:N?,a;, (10)
o 22dr

where 4G and R represent the portions of the values of ¢ and of
£ due to this layer of the coil.
Now if £ be the given electromotive force,

E=y(R+r),
where r is the resistance of the external part of the circuit, in-
dependent of the galvanometer, and the force at the centre is

yG:ER—

+7
G .

‘We have therefore to make s a maximum, by properly ad-
justing the section of the wire in each layer. This also necessarily
involves a variation of ¥ because Y depends on .

Let G, and R, be the values of @ and of R+ when the given

layer is excluded from the calculation. We have then
@ Go+ 'Ev s (12)
Rir ]1’ +dR

and to make this a maximum by the variation of the value of y for

the given layer we roust have

a

——.d@G

& - _“. (13)
4 gr BT

dy

Since dz is very small and ultimately vanishes, % will be sensibly,
0

and ultimately exactly, the same whichever layer is excluded, and

we may therefore regard it as constant. We have thercfore, by (10)

and (11), wz( g dy) pR+
32 y dY

If the method of covering the wire and of winding it is such
that the proportion between the space occupied by the metal of

= constant. (14)

IRIS - LILLIAD - Université Lille 1



720.] SENSITIVE GALVANOMETER. 325

the wire bears the same proportion to the space between the wires
whether the wire is thick or thin, then

Y dy

JAF=
and we must make both 7 and 17 proportional to z, that is to say,
the diameter of the wire in any layer must be proportional to the
linear dimension of that layer.

If the thickness of the insulating covering is constant and equal

to &, and if the wires are arranged in square order,

Y = 2(y+b), (15)
and the condition is
i (iy +9) = constant. (16)

In this case the diameter of the wire increases with the diameter
of the layer of which it forms part, but not in so high a ratio.

If we adopt the first of these two hypotheses, which will be nearly
true if the wire itself nearly fills up the whole space, then we may
put ¥ = axz, Y = By,
where a and 8 are constant numerical quantities, and

1 1
G = N-, 52(“9)’

1 1
R= NP 4/3&(__&),
where a is a constant dependmg upon the size and form of the free
space left inside the eoil. -

Hence, if we make the thickness of the wire vary in the same
ratio as x, we obtuin very little advantage by increasing the
external size of the coil after the external dimensions have become
a large multiple of the internal dimensions.

720.] If increase of resistance is not regarded as a defect, as
when the external resistance is far greater than that of the gal-
vanometer, or when our only object is to produce a field of intense
force, we may make y and Y constant. We have then

7
T = ;2 (z—a),

- & ('ZI —ala))

where @ is a constant dcpendlng on the vacant space inside the
coil. In this case the value of G increases uniformly as the
dimensions of the coil are increased, so that there is no limit to
the value of G except the labour and expense of making the coil.
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On Suspended Coils.

721.] In the ordinary galvanometer a suspended magnet is acted
on by a fixed coil. But if the coil can be suspended with sufficient
delicacy, we may determine the action of the magnet, or of another
coil on the suspended coil, by its deflexion from the position of
equilibrium,

‘We cannot, however, introduce the electrie current into the coil
unless there is metallic connexion between the electrodes of the
battery and those of the wire of the coil. This connexion may be
made in two different ways, by the Bifilar Suspension, and by wires
in opposite directions.

The bifilar suspension has alveady been described in Art. 459
as applied to magnets. The arrangement of the upper part of the
suspension is shewn in Fig. 55. When applied to coils, the two
fibres are no longer of silk but of metal, and since the torsion of
a metal wire capable of supporting the coil and transmitting the
current is much greater than that of a silk fibre, it must be taken
specially into account. This suspension has been brought to great
perfection in the instruments constructed by M. Weber.

The other method of suspension is by means of a single wire
which is connected to one extremity of the coil. The other ex-
tremity of the coil is connected to another wire which is made
to hang down, in the same vertical straight line with the first wire,
into a cup of mereury, as is shewn in Fig. 57, Art. 729. In certain
cases it 1s convenient to fasten the extremities of the two wires to
pieces by which they may be tightly stretched, care being taken
that the line of these wires passes
through the centre of gravity of the
coil. The apparatus in this form
may be used when the axis is not
vertical 5 see Fig. 53.

722.| The suspended coil may be
used as an exceedingly sensitive gal-
vanometer, for, by increasing the in-
tensity of the magnetic force in the
field in which it hangs, the foree due
to a feeble current in the coil may
be greatly increased without adding
to the mass of the coil. The mag-
netic force for this purpose may be
produced by means of permanent magnets, or by electromagnets

Fig. 53.
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excited by an auxiliary current, and it may be powerfully concen-
trated on the suspended coil by means of soft iron armatures. Thus,
in Sir W. Thomson’s recording apparatus, IFig. 53, the coil is sus-
pended between the opposite poles of the electromagnets & and §,
and in order to concentrate the lines of maguetic force on the ver-
tical sides of the coll, a piece of soft iron, D, is fixed between the
poles of the magnets. This iron becoming magnetized by induc-
tion, produces a very powerful field of force, in the intervals between
it and the two magnets, through which the vertical sides of the
coll are free to move, so that the coil, even when the current
through it is very feeble, is acted on by a considerable force
tending to turn it about its vertical axis.

723.] Another application of the suspended coil is to determine,
by comparison with a tangent galvanometer, the horizontal com-
ponent of terrestrial magnetism.

The coil is suspended so that it is in stable equilibrium when
its plane is parallel to the magnetic meridian. A current y is
passed through the coil and causes it to be deflected into a new
position of equilibrium, making an angle 0 with the magnetic
meridian. If the suspension is bifilar, the moment of the couple
which produces this deflexion i1s Fsin 8, and this must be equal to
I{y g cos 8, where 7 is the horizontal component of terrestrial mag-
netism, y 1s the current in the eoil, and g is the sum of the areas of
all the windings of the coil. Hence

1y = Ltano.
g

If 4 is the moment of inertia of the coil about its axis of sus-
pension, and 7 the time of a single vibration,

FT? = n24d,
w8 A
and we obtain Hy = % tan 6.

If the same current passes through the coil of a tangent galva-
nometer, and deflects the magnet through an angle ¢,

y_l

y/ e

where 7 is the prineipal constant of the tangent gulvanometer, Art. 710.

tan ¢,

From these two equations we obtain

o AG tan g T Atangtan ¢
”—TN/W’ 7—?\/*"07 o
This method was given by F. Kohlrausch *.

* Pogg., Ann. exxxviii, Feb, 1869,
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7247 Sir William Thomson has constructed a single instrument,
by means of which the observations required to determine H and y
may be made simultaneously by the same observer.

The coil 1s suspended so as to be in equilibrium with its plane
in the magnetic meridian, and is deflected from this position
when the current flows through it. A very small magnet is sus-
pended at the centre of the coil, and is deflected by the current in
the direction opposite to that of the deflexion of the coil. Let the
deflexion of the coil be 6, and that of the magnet ¢, then the
energy of the system 1s

Hygsinf+myGsin{6—¢)—FH mcos d—Fcosé.

Differentiating with respeet to 6 and ¢, we obtain the equa-
tions of equilibrium of the coil and of the magnet respectively,

Hygeos@+myGcos(0—¢)+ Fsingd = 0,
—my Geos(0—¢)+ msing = 0.

From these equations we find, by eliminating H or y, a quadratic
equation from which y or X may be found. If », the magnetic
moment of the suspended magnet, is very small, we obtain the
following approximate values ,

; ™ — A G sin 6 cos (0 —¢) m@G cos (0 —o)
= . — LIV
7 gcosfsin ¢ g cos @

7 /\/ —Asmbsindg L™ sing
L Ggcosfcos(—¢) * g cos@

In these expressions G and ¢ are the principal electric constants
of the coil, 4 its moment of inertia, 7 its time of vibration, m the
magnetic moment of the magnet, 77 the intensily of the horizontal
magnetic force, y the strength of the current, 6 the deflexion of the
coil, and ¢ that of the magnet.

Since the deflexion of the coil is in the opposite direction to the
deflexion of the magnet, these values of /I and y will always be
real.

Weber's Electrodynamonmeter.

725.] In this instrument a small coil is suspended by two wires
within a larger coil which is fixed. When a current is made to
flow through both coils, the suspended coil tends to place itself
parallel to the fixed coil. This tendeney is counteracted by the
moment of the forces arising from the bifilar suspension, and it is
also affected by the action of terrestrial magnetism on the sus-
pended coil.
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In the ordinary use of the instrument the planes of the two coils
are nearly at right angles to each other, so that the mutual action
of the currents in the coils may be as great as possible, and the
plane of the suspended coil is nearly at right angles to the magnetic
meridian, so that the action of tervestrial magnetism may be as
small as possible.

Let the magnetic azimuth of the plane of the fixed coil be a,
and et the angle which the axis of the suspended coil makes with
the plane of the fixed coil be 0+ 3, where 8 is the value of this
angle when the coil is in equilibrium and no current is flowing,
and 6 is the deflexion due to the current. The equation of equi-
Librium is

Ggy,yscos(0+8)—Lgyysin (04 8+ a)—Fsinéd = 0.

Let us suppose that the instrument is adjusted so that a and 3
are both very small, and that gy, is small compared with 7.
‘We have in this case, approximately,

tang— GI71vacosB_ Hyysin(a+8) HGy yy?  G*¢n’y,’sing
- F F Fe 2

If the deflexions when the signs of 3, and y, are changed are

as follows : 9, when y, is + and y, +, -
02 33 - 1y ]
03 52 + 2 T
0, 2 — ) + 3

then we find

3

YYa=1 Ggaos (tan 0, +tan 6,—tan 0, —tan 6,).

If it is the same current which flows through both coils we may put
717, = ¥?, and thus obtain the value of .

When the currents are not very constant it is best to adopt this
method, which is called the Method of Tangents.

If the currents are so constant that we can adjust 3, the angle
of the torsion-head of the imstrument, we may get rid of the
correction for terrestrial magnetism at once by the method of sines.
In this method B is adjusted till the deflexion is zero, so that

6 =—2.

If the signs of y; and v, are indicated by the suffixes of 8 as

before,

FsinB, = —FsinB;=—Ggnv,+Hgy,sina,
Fsing, = —Fsing, =—Ggyv.~1gy,sina,
r . . ] .
and V172 = —:17}5 (sin B+ sin B;—s1n 3; —sin B,).
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This is the method adopted by Mr. Latimer Clark in his use
of the instrument construeted by the Electrical Committee of the
British Association. We are indebted to Mr. Clark for the drawing
of the electrodynamometer in Figure 54, in which Helmholtz’s
arrangement of two coils is adopted both for the fixed and for the
suspended coil *. The torsion-head of the instrument, by which
the bifilar suspension is adjusted, is represented in Fig.55. The

Fig. 55.

equality of the tension of the suspension wires is ensured by their
being attached to the extremities of a sillt thread which passes over
a wheel, and their distance is regulated by two guide-wheels, which
can be set at the proper distance. The suspended coil can be moved
vertically by means of a screw acting on the suspension-wheel,
and horizontally in two directions by the sliding pieces shewn at
the bottom of Fig. 55. It is adjusted in azimuth by means of the
torsion-screw, which turns the torsion-head round a vertical axis
(see Art. 459). The azimuth of the suspended coil is ascertained
by observing the reflexion of a scale in the mirror, shewn just
beneath the axis of the suspended coil.

* In the actual instrument, the wires conveying the current to and from the coils

are not spread out as displayed in the figure, but are kept as close together as pos-
sible, 80 as to neutralize each other’s electromagnetic action.

IRIS - LILLIAD - Université Lille 1



332 ELECTROMAGNETIC INSTRUMENTS. [726.

The instrument originally constructed by Weber is described in
his Elektrodynamische Maasbestimmungen. It was intended for the
measurement of small currents, and therefore both the fixed and
the suspended coils consisted of many windings, and the suspended
col] occupied a larger purt of the space within the fixed coil than in
the instrument of the British Association, which was primarily in-
tended as a standard instrument, with which more sensitive instru-
ments might be compared. The experiments which he made with
it furnish the most complete experimental proof of the accuracy of
Ampere’s formula as applied to closed currents, and form an im-
portant part of the researches by which Weber has raised the
numerical determination of electrical quantities to a very high rank
as regards precision.

‘Weber’s form of the electrodynamometer, in which one ceil is
suspended within another, and is acted on by a couple tending
to turn it about a vertical axis, is probably the best fitted for
absolute measurements. A method of calculating the constants of
such an arrangement is given in Art. 697.

726.] If, however, we wish, by meauns of a feeble current, to
produce a considerable electromagnetic force, it is better to place
the suspended coil parallel to the fixed coil, and to make it capable
of motion to or from it.

The suspended coil in Dr. Joule’s
current-weigher, Fig. 56, is horizontal,
and capable of vertical motion, and the
force between 1t and the fixed coil is
estimated by the weight which must
be added to or removed from the coil
in order to bring it to the same relative
position with respect to the fixed coil
that it has when no current passes.

The suspended coil may also be
fastened to the extremity of the hori-
zontal arm of a torsion-balance, and
may be placed between two fixed coils, one of which attracts it,
while the other repels it, as in Fig. 57.

By arranging the coils as deseribed in Art. 729, the force acting
on the suspended coil may be made nearly uniform within a small
distance of the position of equilibrium.

Fig. 56.

Another coil may be fixed to the other extremity of the arm
of the torsion-balance and placed bLetween two fixed coils.  If the
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two suspended coils are similar, but with the current flowing in
opposite directions, the effect of terrestrial magnetism on the

Fig. 67.

position of the arm of the torsion-balance will be completely
eliminated. '

727.] If the suspended coil is in the shape of a long solenoid,
and is capable of moving parallel to its axis, so as to pass into
the interior of a larger fixed solenoid having the same axis, then,
if the current is in the same direction in both solenoids, the sus-
pended solenoid will be sucked into the fixed one by a force which
will be nearly uniform as long as none of the extremities of the
solenoids are near one another.

728.] To produce a uniform longitudinal force on a small coil
placed between two equal coils of much larger dimensions, we
should make the ratio of the diameter of the large coils to the dis-
tance between their planes that of 2 to /3. If we send the same
current through these coils in opposite directions, then, in the ex-
pression for w, the terms involving odd powers of » disappear, and
since sin?a = 4 and cos?a = %, the term involving #* disappears
also, and we have

_ r2 76
o=4% '?r””"y{SFQZ(B)'*‘IVIC‘GQG(@'*‘&C'}’

which indicates a nearly uniform force on a small suspended coil.
The arrangement of the coils in this ease is that of the two oufer
coils In the galvanometer with three coils, described at Art. 715.
See Fig. 51.
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729.] If we wish to suspend a coil between two coils placed
s0 near it that the distance between the mutually acting wires is
small compared with the radius of the coils, the most uniform force
is obtained by making the radius of either of the outer coils exceed

that of the middle one by ;}—, of the distance between the planes
3

of the middle and outer coils,
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CHAPTER XVI

ELECTROMAGNETIC OBSERVATIONS.

730.7 So many of the measurements of electrical quantities
depend on observations of the motion of a vibrating body that we
shall devote some attention to the nature of this motion, and the
best methods of observing it.

The small oscillations of a body about a position of stable equi-
librium are, in general, similar to those of a point acted on by
a force varying directly as the distance from a fixed point. In
the case of the vibrating bodies in our experiments there is also
a resistance to the motion, depending on a variety of causes, such
as the viscosity of the air, and that of the suspension fibre. In
many electrical instruments there is another cause of resistance,
namely, the reflex action of currents induced in conducting circuits
placed near vibrating magnets. These currents are induced by the
motion of the magnet, and their action on the magnet is, by the
law of Lenz, invariably opposed to its motion. This is in many
cases the principal part of the resistance.

A metallic circuit, called a Damper, is sometimes placed near
a magunet for the express purpose of damping or deadening its
vibrations. We shall therefore speak of this kind of resistance
as Damping.

In the case of slow vibrations, such as can be easily observed,
the whole resistance, from whatever causes it may arise, appears
to be proportional to the velocity. It is only when the velocity
is much greater than in the ordinary vibrations of electromagnetic
instruments that we have evidence of a resistance proportional to
the square of the velocity.

We have therefore to investigate the motion of a body subject
to an attraction varying as the distance, and to a resistance varying
as the velocity.
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731.] The following application, by Professor Tait*, of the
principle of the Hodograph, enables us to investigate this kind
of motion in a very simple manner by means of the equiangular
spiral.

Let it be required to find the acceleration of a particle which
describes a logarithmic or equiangular spiral with uniform angular

velocity o about the pole.
The property of this spiral is, that the tangent T makes with

the radius vector 78 a constant angle a.
If » 1s the velocity at the poini P, then
v.sina = w.8P.
Hence, if we draw 8§27’ parallel to P7 and equal to 8P, the velocity
at P will be given both in magnitude and direction by

w
v=-——8F
sin a

4
A A
r
B
Vs

Fig. 58.

Hence 2 will be a point in the hodograph. But S is SP turned
through a constant angle w—a, so that the hodograph described
by 7 is the same as the original spiral turned about its pole through
an angle 7—a.
The acceleration of £ is represented in magnitude and direction
w
sina
Hence, if we perform on S/ the same operation of turning it

by the velocity of 7" multiplied by the same factor,

* Proc. R. S. Edin., Dec. 16, 1867.

IRIS - LILLIAD - Université Lille 1



732.] DAMPED VIBRATIONS. 337

through an angle m—a into the position §P”, the acceleration of P
will be equal in magnitude and direction to
2
——— 8P,
sin®a
where SP” is equal to SP turned through an angle 27—2a.
If we draw PF equal and parallel to §P”, the acceleration will be

w?

~—— PF, which we may resolve into
2

sin?a

(O] 2

2
PS§ and

sin?a sin?a

PK.

The first of these components is a central force towards § pro-
portional to the distance.
The second is in a direction opposite to the velocity, and since

sin a cos
PK=2cosaP§=—3 20082,

w
this force may be written
@ COSa
2 ?

sin a
The acceleration of the particle is therefore compounded of two
parts, the first of which is an attractive force p7, directed towards 8,
and proportional to the distance, and the second is —24v, a resist-
ance to the motion proportional to the velocity, where

. . kis . .
If in these expressions we make a — 5 the orbit becomes a cirele,

and we have p, = wy?, and £ = 0.
Hence, if the law of attraction remains the same, p = y,, and
w = w, sin a,
or the angular velocity in different spirals with the same law of
attraction is proportional to the sine of the angle of the spiral.

732.] If we now consider the motion of a point which is the
projection of the moving point P on the horizontal line X7, we
shall find that its distance from § and its velocity are the horizontal
components of those of 2. Hence the acceleration of this point is
also an attraction towards 8, equal to p times its distance from S,
together with a retardation equal to £ times its velocity.

‘We have therefore a complete construction for the rectilinear
motion of a point, subject to an attraction proportionmal to the
distance from a fixed point, and to a resistance proportional to
the velocity. The motion of such a point is simply the horizontal

VOL. II. Z
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part of the motion of another point which moves with uniform
angular velocity in a logarithmic spiral.

733.] The equation of the spiral is

7 = Ce$cote,
To determine the horizontal motion, we put
¢ = wft, 2z = a+rsin ¢,
where ¢ is the value of # for the point of equilibrium.

If we draw BSD making an angle a with the vertical, then the
tangents BX, DY, GZ, &c. will be vertical, and X, ¥, Z, &e. will
be the extremities of successive oscillations.

734.] The observations which are made on vibrating bodies are—

(1) The seale-reading at the stationary points. These are called
Elongations.

(2) The time of passing a definite division of the scale in the
positive or negative direction.

(3) The scale-reading at certain definite times. Observations of
this kind are not often made except in the case of vibrations
of long period *,

The quantities which we have to determine are—

(1) The scale-reading at the position of equilibrium.

(2) The logarithmic decrement of the vibrations.

(3) The time of vibration.

To determine the Reading af the Position of Eguilibrivm from
Three Consecutive Elongations.

735.] Let z,, #,, z; be the observed scale-readings, corresponding
to the elongations X, ¥, Z, and let a be the reading at the position
of equilibrium, §, and let 7, be the value of 85,

H—a = 781 a,
r,—a =—r, sin ae-rota
Zz—a = 7 sinae-2meta,

From these values we find
(2, —a) (23—a) = (2,—a)?,
Ty Ty —my°
Zy+2y— 2,

whence a =

When g does not differ much from », we may use as an ap-
proximate formula
a = i (z,+ 27,4 z,).

* Sce Gauss, Resultate des Magnetischen Vereins, 1836, IL.
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To determine the Logarithmic Decrement.

786.] The logarithm of the ratio of the amplitude of a vibration
to that of the next following is called the Logarithmic Decrement.
If we write p for this ratio

@y —a,

p= 2o, I = log, p, A =log, p.

L is called the common logarithmic decrement, and A the Napierian
logarithmic decrement. It is manifest that

A= Llog.10 = 7 cota.

A
Hence a=cot71-,
T

which determines the angle of the logarithmie spiral.

In making a special determination of A we allow the body to
perform a considerable number of vibrations. If ¢, is the amplitude
of the first, and ¢, that of the #tt vibration,

1 ]
A= n—1 log. ("_u) )

If we suppose the accuracy of observation to be the same for
small vibrations as for large ones, then, to obtain the best value
of A, we should allow the vibrations to subside till the ratio of ¢; to
¢, becomes most nearly equal to e, the base of the Napierian

. .. 1
logarithms. This gives » the nearest whole number to x + 1.

Since, however, in most cases time is valuable, it is best to take
the second set of observations before the diminution of amplitude
has proceeded so far.

737.] In certain cases we may have to determine the position
of equilibrium from two consecutive elongations, the logarithmic
decrement being known from a special experiment. We have then

_r+ e,
T T 14e

Time of Fibration.

788.] Having determined the scale-reading of the point of equi-
librium, a conspicuous mark is placed at that point of the scale,
or as near it as possible, and the times of the passage of this mark
are noted for several successive vibrations.

Let us suppose that the mark is at an unknown but very small
distance « on the positive side of the point of equilibrium, and that

z2
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¢, is the observed time of the first transit of the mark in the positive
direction, and 4,, #;, &c. the times of the following transits.
If 7 be the time of vibration, and P,, P,, F,, &c. the times of
transit of the true point of equilibrium,
t1=P1+%, t2=Pz—f-:—2:
where v;, v,, &c. are the successive velocities of transit, which we
may suppose uniform for the very small distance 2.
If p is the ratio of the amplitude of a vibration to the next in
suceession, 1 z x
Uy =—;1)1, and ;}; =—pa-
If three transits are observed at times ¢,, #,, 3, we find
z t1—2t2+t3.
v, (p+1)?
The period of vibration is therefore

p—1
7= %(53—51)—%m(51“2'52+t3)-

The time of the second passage of the true point of equilibrium is

1 (p— IE
o1y

Three transits are sufficient to determine these three quantities,
but any greater number may be combined by the method of least
squares. Thus, for five transits,

Py =i (h+2t+1)— (hi—22,+ 1)

p—1 P
=T%(2t5+t4—tz—2tl)_;v(51—252-{-253—2z4+i5)m 2_1_+_p2 .
The time of the third transit is,
—1)2
Py §(t + 28,4 20y + 28,4+ £)— 4 (5 — 21y + 24,— 24, + £,) EZ+1§2'

739.] The same method may le extended to a series of any
number of vibrations. If the vibrations are so rapid that the time
of every transit cannot be recorded, we may record the time of
every third or every fifth transit, taking care that the directions
of successive transits ave opposite. If the vibrations continue
regular for a long time, we need not observe during the whole
time. 'We may begin by observing a sufficient number of transits
to determine approximately the period of vibration, 7, and the time
of the middle transit, 2, noting whether this transit is in the
positive or the negative direction. We may then either go on
counting the vibrations without recording the times of transit,
or we may leave the apparatus unwatched. We then observe a

IRIS - LILLIAD - Université Lille 1



741.] PERIODIC TIME OF VIBRATION. 341

second series of transits, and deduce the time of vibration 7 and
the time of middle transit P, noting the direction of this transit.

If 7' and 7", the periods of vibration as deduced from the twa
sets of observations, are nearly equal, we may proceed to a more
accurate determination of the period by combining the two series
of observations.

Dividing Z—P by 7, the quotient ought to be very nearly
an integer, even or odd according as the transits P and P’ are
in the same or in opposite directions. If this is not the case, the
series of observations 1s worthless, but if the result is very nearly
a whole number #, we divide P”— P by #, and thus find the mean
value of 7 for the whole time of swinging.

740.] The time of vibration 7' thus found is the actual mean
time of vibration, and is subject to corrections if we wish to deduce
from it the time of vibration in infinitely small arcs and without
damping.

To reduce the observed time to the time in infinitely small ares,
we observe that the time of a vibration of amplitude a Is in general

of the form T = T, (1+xc?),

where « is a coefficient, which, in the case of the ordinary pendulum,
is ¢y. Now the amplitudes of the successive vibrations are e,

2

ep~Y, ep72, ... ¢p'™", so that the whole time of » vibrations 18

2,2 2
nT =1, (n +k p—%a—:rlcl‘—) :
where 7 is the time deduced from the observations.
Hence, to find the time 7} in infinitely small arcs, we have
approximately,

=pfi_rair el
h= T{ n pi—1 }
To find the time 7, when there is no damping, we have
Ty,=1sina
T
t A w2 A2
741.] The equation of the rectilincar motion of a body, attracted
to a fixed point and resisted by a force varying as the velocity, is
d%z dz
@t 22 dt

where # is the coordinate of the body at the time Z, and « is the
coordinate of the point of equilibrium,

+o? (8 —a) = 0, (1)
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To solve this equation, let

z—a = e*y; (2)
2y
then yra +(0?—AD)y = 0; (3)
the solution of which is
y = Ccos(~/w>—#2¢{+a), when £ is less than w ; (4)
7 = A+ B¢, when % is equal to w; (5)

and gy = C'cosh(+/#*—w?{+a), when £ is greater than w. (6)

The value of # may be obtained from that of y by equation (2).
‘When % is less than w, the motion consists of an infinite series of
oscillations, of constant periodic time, but of continually decreasing
amplitude. As £ increases, the periodic time becomes longer, and
the diminution of amplitude becomes more rapid.

When £ (half the coefficient of resistance) becomes equal to or
greater than w, (the square root of the acceleration at unit distance
from the point of equilibrium,) the motion ceases to be oscillatory,
and during the whale motion the body can only once pass through
the point of equilibrium, after which it reaches a position of greatest
elongation, and then returns towards the point of equilibrium, con-
tinually approaching, but never reaching it.

Galvanometers in which the resistance is so great that the motion
is of this kind are called dead beat galvanometers. They are useful
in many experiments, but especially in telegraphic signalling, in
which the existence of free vibrations would quite disguise the
movements which are meant to be observed.

Whatever be the values of £ and o, the value of @, the scale-
reading at the point of equilibrium, may be deduced from five scale-

readings, p, ¢, 7, 8, ¢, taken at equal intervals of time, by the formula
g (rs—gt)+7(pl—r")+s(qgr—ps)

(p—2q+r) (r—2s+2¢)— (g—2r+s)2

On the Observation of the Galvanometer.

742.] To measure a constant current with the tangent galvano-
meter, the instrument is adjusted with the plane of its coils parallel
to the magnetic meridian, and the zero reading is taken. The
current is then made to pass through the coils, and the deflexion
of the magnet corresponding to its new posilion of equilibrium is
observed. Let this be denoted by ¢.

Then, if X is the horizontal magnetic force, & the coeflicient of
the galvanometer, and y the strength of the current,

¥y = Eﬂtazuf). ) (1
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If the coefficient of torsion of the suspension fibre is v M H (see
Art. 452), we must use the corrected formula

y:%{(tanq‘,«}—r(ﬁ sec ¢). (2)

Best Value of the Deflexion.

743.] In some galvanometers the number of windings of the
coil through which the current flows can be altered at pleasure.
In others a known fraction of the current can be diverted from the
galvanometer by a conductor called a Shunt. In either case the
value of G, the effect of a unit-current on the magnet, 1s made
to vary.

Let us determine the value of &, for which a given error in the
observation of the deflexion corresponds to the smallest error of the
deduced value of the strength of the current.

Differentiating equation (1), we find

dy H

il 2 3
dp = @ ¢ ®)

e e . do 1 .,
o _— = — . 4
Eliminating G, i =2y sin 2 ¢ (1)

This is a maximum for a given value of y when the deflexion is
45°. The value of G should therefore be adjusted till Gy is as
nearly equal to  as is possible; so that for strong currents it is
better not to use too sensitive a galvanometer.

On the Best Method of applying the Current.

744.] When the observer is able, by means of a key, to make or
break the conpexions of the circult at any instant, it is advisable to
operate with the key in such a way as to make the magnet arrive
at its position of equilibrium with the least possible velocity. The
following method was devised by Gauss for this purpose.

Suppose that the magnet is in its position of equilibrium, and that
there is no current. 'The observer now makes contact for a short
time, so that the magnet is set in motion towards its new position
of equilibrium. Ile then breaks contact. The force is now towards
the original position of equilibrium, and the motion is retarded. If
this 1s so managed that the magnet comes to rest exactly at the
new position of equilibrium, and if the observer again makes con-
tact at that instant and maintains the contact, the magnet will
remain at rest in its new position.
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If we neglect the effect of the resistances and also the inequality
of the total force acting in the new and the old positions, then,
since we wish the new force to generate as much kinetic energy
during the time of its first action as the original force destroys
while the eircuit is broken, we must prolong the first action of the
current till the magnet has moved over half the distance from the
first position to the second. Then if the original force acts while
the magnet moves over the other half of its course, it will exactly
stop it. Now the time required to pass from a point of greatest
elongation to a point half way to the position of equilibrium is
one-sixth of a complete period, or one-third of a single vibration.

The operator, therefore, having previously ascertained the time
of a single vibration, makes contact for one-third of that time,
breaks contact for another third of the same time, and then makes
contact again during the continuance of the experiment. The
magnet 1s then either at rest, or its vibrations are so small that
observations may be taken at once, without waiting for the motion
to die away. For this purpose a metronome may be adjusted so as
to beat three times for each single vibration of the magnet.

The rule is somewhat more complicated when the resistance is of
sufliclent magnitude to be taken into account, but in this case the
vibrations die away so fast that it is unnecessary to apply any
correetions to the rule.

When the magnet is to be restored to its original position, the
circuit is broken for one-third of a vibration, made again for an
equal time, and finally broken. This leaves the magnet at rest in
its former position.

If the reversed reading is to be taken immediately after the direct
one, the circuit is broken for the time of a single vibration and
then reversed. This brings the magnet to rest in the reversed
position.

Measurement by the Virst Swing.

745.] When there is no time to make more than one observation,
the current may be measured by the extreme elongation observed
in the first swing of the magnet. If tliere is no resistance, the
permanent deflexion ¢ is half the extreme elongation. If the re-
sistance 1s such that the ratio of one vibration to the next is p, and
if 8, is the zero reading, and 6, the extreme elongation in the first
swing, the deflexion, ¢, corresponding to the point of equilibrium is
¢ = 65+ n0; .

1+p
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In this way the deflexion may be caleulated without waiting for
the magnet to come to rest in its position of equilibrium.

To make a Series of Olbservations.

746.] The best way of making a considerable number of mea-
sures of a coustant current is by observing three elongations while
the current is in the positive direction, then breaking contact for
about the time of a single vibration, so as to let the magnet swing
into the position of negative deflexion, then reversing the current
and observing threc successive elongations on the negative side,
then breaking contact for the time of a single vibration and re-
peating the observations on the positive side, and so on till a suffi-
clent number of observations have been obtained. In this way the
errors which may arise from a change in the direction of the earth’s
magnetic force during the time of observation are eliminated. The
operator, by earefully timing the making and breaking of contact,
can easily regulate the extent of the vibrations, so as to make them
sufficiently small without being indistinct. The motion of the
magnet is graphically represented in Fig. 59, where the abscissa
represents the time, and the ordinate the deflexion of the magnet.
If 0, ... 6; be the observed elongutions, the deflexion is given by the

equation Bp = 0,+20,+0,—0,—20,—6,.

Fig. 59.

Method of Multiplication.

747.] In certain cases, in which the deflexion of the galvanometer
magnet is very small, it may be advisable to increase the visible
effect by reversing the current at proper intervals, so as to set
up a swinging motion of the magnet. For this purpose, after
ascertaining the time, 7, of a single vibration of the magnet, the
current is sent in the positive direction for a time 7, then in the
reversed direction for an equal time, and so on. When the motion
of the magnet has become visible, we may make the reversal of the
currenf at the observed times of greatest elongation.

Let the magnet be at the positive elongation 6;, and let the
current be sent through the coil in the negative direction. The
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point of equilibrium is then —¢, and the magnet will swing to a
negative elongation 6, such that

_P(¢+61) = (Qo+¢),

or —p0, = 6,4+ (p+1)¢.
Similarly, if the current is now made positive while the magnet
swings to 6,, ply =—06,+(p+1) ¢,

or  p?f, =0+ (p+1)%¢;
and if the current is reversed # times In succession, we find

(—1r o=+ E -,
whence we may find ¢ in the form
ngyp—1 1
¢ = (0—p 9o)m ==

If # is a number so great that p=™ may be neglected, the ex-

pression becomes o=, p—1.

pt 1
The application of this method to exact measurement requires an
accurate knowledge of p, the ratio of one vibration of the magnet
to the next under the influence of the resistances which it expe-
riences. The uncertainties arising from the difficulty of avoiding
irregularities in the value of p generally outweigh the advantages
of the large angular clongation. It 18 only where we wish to
establish the cxistence of a very small current by causing it to
produce a visible movement of the needle that this method is really

valuable.

On the Measurement of Transient Currents.

748.] When a current lasts only during a very small fraction of
the time of vibration of the galvanometer-magnet, the whole quan-
tity of electricity transmitted by the current may be measured by
the angular velocity communicated to the magnet during the
passage of the current, and this may be determined from the
elongation of the first vibration of the magnet.

If we neglect the resistance which damps the vibrations of the
magnet, the investigntion becomes very simple.

Let y be the intensity of the current at any instant, and @ the
quantity of electricity which it transmits, then

Q=[va. | (1)
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Let M be the magnetic moment, and 4 the moment of incrtia of
the magnet and suspended apparatus,
2
4 C—fl—;+]l[Hsin 6 = MGy cos 6. (2)
If the time of the passage of the current is very small, we may
Integrate with respeet to ¢ during this short time without regarding
the change of 0, and we find
dd
4 7=
This shews that the passage of the quantity @ produces an angular
momentum MG cos 6, in the magnet, where 8, is the value of 0
at the instant of passage of the current. If the magnet is initially

MGcos60f7d4+C’= MGQ cosb,+C. (3)

in equilibrium, we may make 6, = 0.

The magnet then swings freely and reaches an elongation 6,. It
there is no resistance, the work done against the magnetic force
during this swing is M H (1 —cos 8,).

The encrgy communicated to the magnet by the current is

46}
Rk

Equating these quantities, we find

a6)* MH

%} =2 4 (1 —cos 6,), (4)

a0 MH .
whence = 2 /\/T sin £ 0,
MG
=, @ by (3). (8)

But if 7 be the time of a single vibration of the magnet,

4
7= A4
"A st )

and we find Q=2 Todinta, (7)

where / 1s the horizontal magnetic force, G' the coefficient of the
galvanometer, 7 the time of a single vibration, and 6, the first
elongation of the magnet.

749.] In many actual experiments the elongation is a small
angle, and it is then easy to take into account the effect of resist-
ance, for we may treat the equation of motion as a linear equation.

Let the magnet be at rest at its position of equilibrium, let an
angular velocity » be communicated to it instantaneously, and let
its first elongation be 6, .
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The equation of motion is

0 = Ce—wittam8 sin ), ¢, (8)
dé
5= C o, sec Be~“1ttanf cos (0, £ 4 B). %)

When £ =0, § =0, and EZd—;’:le-_—_'u.

When w,4+3 = g;

—(Z_ n 10
6 =Ce (3 ﬂﬁaﬁcosﬁ:ﬂl. (10)
Hence 6, = wi e‘(i_ﬂ)mﬁ cos 8. (11)
1
- MIir
Now — = w? = w,? sec? B, (12)
A T
‘ tanf ==, o = 7 (13)
e
=—Q (14)
QG /\/TTZ—IXE —-itau_ll
Hence 0, = ———e 7 A, 15
1 H VA (15)
H T Aa1 ™
and == =L __er Ag, 16
G Va2 ! (16)

which gives the first elongation in terms of the gquantity of elee-
tricity in the transient current, and conversely, where 1} is the
observed time of a single vibration as affected by the actual resist-
ance of damping. When A is small we may use the approximate

formula HT
Q=7 —(1+3n0, (17)

Method of Recoil.

750.] The method given above supposes the magnet to be at
rest in its position of equilibrium when the transient current 1s
passed through the coil. If we wish to repeat the experiment
we must wait till the magnet is again at rest. In certain cases,
however, in which we are able to produce transient currents of
equal intensity, and to do so at any desired instant, the following
method, described by Weber *, is the most convenient for making
a continued series of observations.

* Resultate des Magnetischen Vereins, 1838, p. 98.

IRIS - LILLIAD - Université Lille 1



750.] METHOD OF RECOIL. 349

Suppose that we set the magnet swinging by means of a transient
current whose value is @,. If, for brevity, we write

G /7 IR E

— A=K
a7 K’ (18)
then the first elongation
6, = KQ, = e, (say). (19)
The velocity instantaneously communicated to the magmnet at
starting is MG .
Yy = —2— QO' (20)

When it returns through the point of equilibrium in a negative
direction its veloeity will be

v =—ve A (21)

The next negative elongation will be
0, =—0,¢e*=10. (22)
When the magnet returns to the point of equilibrium, its velocity
will be 0, = pye A, (28)

Now let an instantaneous current, whose total quantity is — @,
be transmitted through the coil at the instant when the magnet is
at the zero point. It will change the velocity », into »,—w, where

A
v=— Q. (24)
If @ is greater than @) e~ 2}, the new velocity will be negative and
equal to MG
T (@—Qpe™2Y).

The motion of the magnet will thus be reversed, and the next
elongation will be negative,

O, =—K(Q—Qe ) =¢;, =—KQ 8¢ 2 (25)
The magnet is then allowed to come to its positive elongation
0, =—667*=d, = ¢ (KQ—a,e2), (26)

and when it again reaches the point of equilibrium a positive
current whose quantity is @ is {ransmitted. This throws the
magnet back in the positive direction to the positive elongation

6, = KQ —0,e72*; (27)
or, calling this the first elongation of a second series of four,
a, = K@ (1—e 22 qa e %A (28)

Proceeding in this way, by observing two elongations + and —,
then sending a positive current and observing two elongations
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— and +, then sending a positive current, and so on, we obtain
a series consisting of sets of four elongations, in each of which

a—6
e, (29)
a—8&¢e Py d—c

and KQ El (——)1_*_?;\“*; (30)

If = series of elongations have been observed, then we find the
logarithmic decrement from the equation
S(d)—=(6)
Z(@)—=2()
and @ from the equation
KQ1+eM(2n—1)
=3I, (@a—~b—c+d)(1 462" —(a;—b)—(d,—e,) e 2 (32)

=} (31)

Fig. 60.

The motion of the magnet in the method of recoil is graphically
represented in Fig. 60, where the abscissa represents the time, and
the ordinate the deflexion of the magnet at that time. See Art. 760.

Method of Multiplication.
751.] If we make the transient current pass every time that the
magnet passes through the zero point, and always so as to increase
the velocity of the magnet, then, if 6;, 6,, &c. are the successive

elongations, 6, =—KQ—e24, (33)

6, =—KQ—e*9,. (34)

The ultimate value to which the elongation tends after a great
many vibrations is found by putting 6, = —#6,_,, whence we find

6=+ — KQ. (35)

If A is small, the value of the ultimate elongation may be large,
but since this involves a long continued experiment, and a careful
determination of A, and since a small error in A introduces a large
error in the determination of @, this method is rarely useful for
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numerical determination, and should be reserved for obtaining evi-
dence of the existence or non-cxistence of currents too small to be
observed directly.

In all experiments in which transient currents are made to act on
the moving magnet of the galvanometer, it is essential that the
whole current should pass while the distance of the magnet from
the zero point remains a small fraction of the total elongation.
The time of vibration should therefore be large compared with the
time required to produce the current, and the operator should have
his eye on the motion of the magnet, so as to regulate the instant
of passage of the current by the instant of passage of the magnet
through its point of equilibrium.

To estimate the error introduced by a failure of the operator to
produce the current at the proper instant, we observe that the effect
of a force in increasing the elongation varies as

edtan  cos (¢ + ),
and that this is a maximum when ¢ = 0. Hence the error arising
from a mistiming of the current will always lead to an under-
estimation of its value, and the amount of the error may be
estimated by comparing the cosine of the phase of the vibration at
the time of the passage of the current with unity.
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CHAPTER XVII.
COMPARISON OF COILS.

Ezperimental Determination of the Electrical Constants
of a Coil.

752.1 Wz have seen in Art. 717 that in a sensitive galvanometer
the coils should be of small radius, and should econtain many
windings of the wire. It would be extremely difficult to determine
the electrical constants of such a coil by direct measurement of its
form and dimensions, even if we ecould obtain access to every
winding of the wire in order to measure it. But in fact the
greater number of the windings are not only completely hidden
by the outer windings, but we are uncertain whether the pressure
of the outer windings may not have altered the form of the inner
ones after the coiling of the wire.

It is better therefore to determine the electrieal constants of the
coll by direct electrical comparison with a standard coil whose con-
stants are known.

Since the dimensions of the standard coil must be determined by
actual measurement, it must be made of considerable size, so that
the unavoidable error of measurement of its diameter or circum-
ference may be as small as possible compared with the quantity
measured. The channel in which the coil is wound should be of
rectangular section, and the dimensions of the section should be
small compared with the radius of the coil. This is necessary, not
so much in order to diminish the correction for the size of the
section, as to prevent any uncertainty about the position of those
windings of the coil which are hidden by the external windings*.

* Large tangent galvanometers are s metimes made with a single circular con-
ducting ring of considerable thickness, which is sufficiently stiff to maintain its form
without any support. This is not a good plan for a standard instrument. The dis-
tribution of the current within the conductor depends on the relative conductivity
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The principal constants which we wish to determine are—

(1) The magnetic force at the centre of the coil due to a unit-
current. This is the quantity denoted by &) in Art. 700.

(2) The magnetic moment of the coil due to a unit-current.
This 1s the quantity g,.

763.] To determine G;. Since the coils of the working galva-
nometer are much smaller than the standard coil, we place the
galvanometer within the standard eoil, so that their centres coincide,
the planes of both coils being vertical and parallel to the earth’s
magnetic force. 'We have thus obtained a differential galvanometer
one of whose coils is the standard coil, for which the value of G
is known, while that of the other coil is ¢/, the value of which we
have to determine.

The magnet suspended in the centre of the galvanometer coil
is acted on by the currents in both coils. If the strength of the
current in the standard coil is y, and that in the galvanometer coil
%', then, if these currents flowing in opposite directions produce a
deflexion 8 of the magnet,

Htand = @)y — Gy, (1)

where H is the horizontal magnetic force of the earth.
If the currents are so arranged as to produce no deflexion, we
may find G,” by the equation

= % G,. (2)

We may determine the ratio of y to 7 in several ways. Since the
value of G is in general greater for the galvanometer than for the
standard coil, we may arrange the circuit so that the whole current
y flows through the standard coil, and is then divided so that
flows through the galvanometer and resistance coils, the combined
resistance of which is A;, while the remainder y—9 flows through
another sct of resistance coils whose combined resistance is &,.

of its various parts. Hence any concealed flaw in the continuity of the metal may
cause the main stream of electricity to flow either close to the outside or close to the
inside of the circular ring. Thus the true path of the current becomes uncertain.
Besides this, when the current flows only ouce round the circle, especial care is
necessary to avoid any action on the suspended magnet due to the current on its
way to or from the circle, because the current in the electrodes is equal to that in
the circle. In the construction of many instruments the action of this part of the
current seems to have been altogether lost sight of.

The most perfect method is to make one of the electrodes in the form of & metal
tube, and the other a wire covered with insulating material, and placed inside the
tube and concentric with it. The external action of the electrodes when thus arranged
is zero, by Art. 683.

YOTL.. 1T, A4
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We have then, by Art. 276,

VB, = (y—7) £, (3)

or % _ RI]-LZR?" 1)

and  G/= ]4‘317%]32 G,. %)

If there is any uncertainty about the actual resistance of the
galvanometer coil (on account, say, of an uncertainty as to its tem-
perature) we may add resistance coils to it, so that the resistance of
the galvanometer itself forms but a small part of &;, and thus
introduces but little uncertainty into the final result.

754.) To determine g;, the magnetic moment of a small coil due
to a unit-current flowing through it, the magnet is still suspended
at the centre of the standard coil, but the small coil is moved
parallel to itself along the common axis of both coils, till the same
current, flowing in opposite directions round the coils, no longer
deflects the magmet. If the distance between the centres of the
coils is 7, we have now

g g g
G1=2;31+3;f+4;§ + &e. (6)

By rcpeating the experiment with the small coil on the opposite
side of the standard coil, and measuring the distance between the
positions of the small coil, we eliminate the uncertain error in the
determination of the position of the centres of the magnet and
of the small coil, and we get rid of the terms in g¢,, g,, &e.

If the standard coil is so arranged that we can send the current
through half the number of windings, so as to give a different value
to G,, we may determine a new value of 7, and thus, as in Art. 454,
we may eliminate the term involving g,.

Tt is often possible, however, to determine g, by direct measure-
ment of the small coil with sufficient accuracy to make it available
in calculating the value of the correction to be applied to g; in

the equation 1
g
91=5G1’3—2;§' (7)
1
where 9a=—3 wa? (6a+3£2—271%), by Art. 700,

Comparison of Coefficients of Induction.

755.] It is only in a small number of cases that the direct
calculation of the coefficients of indunction from the form and
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posttion of the circuits can be easily performed. In order to attain
a sufficient degree of accuracy, 1t is necessary that the distance
between the ecircuits should be capable of exact measurement.
But when the distance between the circuits is sufficient to prevent
errors of measurement from introducing large errors into the result,
the coefficient of induction itself is necessarily very much reduced
in magnitude. Now for many experiments it is necessary to make
the coefficient of induction Jarge, and we can only do so by bringing
the circuits close together, so that the method of direct measure-
ment becomes impossible, and, in order to determine the coefficient
of induction, we must compare it with that of a pair of coils ar-
ranged so that their coefficient may be obtained by direct measure-
ment and calculation. .
This may be done as follows :
Let A and e be the standard
pair of coils, B and & the coils to
be compared with them. Con-
nect 4 and B in one circuit, and
place the electrodes of the gal-
vanometer, G, at P and @, so
that the resistance of P4Q is
R, and that of QBP is §, K
being the resistance of the gal-
vanometer. Connect @ and & in
one circuit with the battery.
Let the current in 4 be 4,
that in B, #, and that in the galvanometer, #—z, that in the battery
circuit being y. -
Then, if M, is the coeflicient of induction between 4 and a, and
A, that between B and &, the integral induction current through
the galvanometer at breaking the battery circuit is

M, M,

B8
S Aian aw e (®)
1+ 7 + TS
By adjusting the resistances £ and § till there is no current
through the galvanometer at making or breaking the galvanometer
circuit, the ratio of 3f, to 3, may be determined by measuring that
of §to R.
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Comparison of a Coefficient of Self-induction with a Coefficient of
Mutual Induction.

756.] In the branch AF of Wheatstone’s Bridge let a coil be
inserted, the coeflicient of self-induc-
tion of which we wish to find. Let
us call it Z.

In the connecting wire between A4
and the battery another coil is inserted.
The coeflicient of mutual induection he-
tween this coil and the coil in AF
is M. It may be measured by the
method described in Art, 755.

If the current from A4 to Fis z, and

Fig. 62. that from 4 to H is y, that from Z
to 4, through B, will be 2+%. The
external electromotive force from A4 to F is

A—F— Py 1% +M(dt dy) 9)

The external electromotive foree along A1 is
A4-H = Qy. (10)
If the galvanometer placed between F and /7 indicates no current,
either transient or permanent, then by (9) and (10), since J/ —F=0,

Pz = Qy; (11)
and (dx dl) =0, (12)
whence L=— (1 + 5 ) M, (13)

Since L is always positive, M must be negative, and therefore the
current must flow in opposite directions through the coils placed
in 2 and in B. In making the experiment we may either begin
by adjusting the resistances so that

PS= QR, (14)
which is the condition that there may be no permanent current,
and then adjust the distance between the coils till the galvanometer
ceases lo indicate a transient current on making and breaking the
battery connexion; or, if this distance is not capable of adjustrent,
we may get rid of the transient current by altering the resistances
@ and S in such a way that the ratio of Q to § remains constant.

If this double adjustment is found too troublesome, we may adopt
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a third method. Beginning with an arrangement in which the
transient current due to self-induction is slightly in excess of that
due to mutual induction, we may get rid of the inequality by in-
serting a conductor whose resistance is # between 4 and Z. The
condition of no permanent current through the galvanometer is not
affected by the introduction of #. 'We may therefore get rid of
the transient current by adjusting the resistance of # alone. When
this is done the value of L is

L:—(1+%+P%VR)M. (15)

Comparison of the Cocfficients of Self-induction of Two Coils.

757.] Insert the coils in two adjacent branches of Wheatstone's
Bridge. Let Z and N be the coeflicients of self-induction of the
coils inserted in 2 and in R respectively, then the condition of no
galvanometer current is

dz dx
(Px+LE)S‘y=Qy(Rz+ZV%), (16)
whence P8 = @R, for no permanent current, (17)
L N .
and 7= for no transient current. (18)

Hence, by a proper adjustment of the resistances, both the per-
manent and the transient current can be got rid of, and then
the ratio of L to N can be determined by a comparison of the
resistances.
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CHAPTER XVIIL

ELECTROMAGNETIC UNIT OF RESISTANCE.

On the Determination of the Resistance of a Coil in Electro-
magnetic Measure.

758.] THE resistance of a conductor is defined as the ratio of the
numerical value of the electromotive forece to that of the current
which it produces in the conductor. The determination of the
value of the current in electromagnetic measure can be made by
means of a standard galvanometer, when we know the value of the
earth’s magnetic force. The determination of the value of the
electromotive force is more difficult, as the only case in which we
can directly calculate its value is when it arises from the relative
motion of the circuit with respeet to a known magnetic system.

759.] The first determination of the resistance of a wire in
electromagnetic measure was made by Kirchhoff*. He employed
two coils of known form, 4, and 4,, and ecalculated their coefficient
of mutual induction from the geo-
metrical data of their form and
position. These coils were placed
in cireuit with a galvanometer, @,
and a battery, B, and two points
of the circuit, 2, between the coils,
and @, between the battery and
galvanometer, were joined by the

Fig. 63.

wire whose resistance, &, was to- be measured.

When the current is steady it is divided between the wire and
the galvanometer circuit, and produces a certain permanent de-
flexion of the galvanometer. If the coil 4, is now removed quickly

* < Bestimmung der Constanten von welcher die Intensitét inducirter elektrischer
Strome abhingt’ Pogg. Ann., 1xxvi (April 1849).

IRIS - LILLIAD - Université Lille 1



759.] KIRCIHOFF'S METIIOD. 359

from 4, and placed in a position in which the coefficient of mutual
induction between 4, and 4, is zero (Art. 538), a current of induc-
tion is produced in both circuits, and the galvanometler needle
receives an impulse which produces a certain transient deflexion.

The resistance of the wire, £, is deduced from a comparison
between the permanent deflexion, due to the steady current, and the
transient deflexion, due to the eurrent of induction.

Let the resistance of QG4, P be X, of P4, 8Q, B, and of P@, £.

Let Z, M and N be the coeflicients of induction of 4, and 4,.

Let & be the current in @, and 7 that in B, then the current
from P to @ is &— 3.

Let Z be the electromotive force of the battery, then

d
(K+R).2'}—Ry‘+%(fm‘;+]![j) = 0, (1)

d
Rit+ (B+R)j+ - (Mi+ Nj) = E. (@)

When the currents are constant, and everything at rest,
(K+ Ry&—Rjp = 0. (3)
If M now suddenly becomes zero on account of the separation of
A4, from 4,, then, integrating with respect to ¢,

(K+Bywe—Ry—Mg = 0, (4)
—Re+(B+Ryy— Mz =fEdt = 0. (5)

_ (B+R)g+ Ra
whence z = Jlmkm. (6)

Substituting the value of 7 in terms of & from (3), we find
@ M (B+R)(K+R)+R?

¢~ K (B+R) K+ R —R )
M 2 R2
=2 tsrn Ein T} ®)

When, as in Kirchhoff’s experiment, both B and K are large
compared with £, this equation is reduced to

z M 9

il (9)

Of these quantities, # is found from the throw of the galvanometer

due to the induetion current, See Art. 768. The permanent cur-

rent, £, is found from the permanent deflexion due to the steady

current ; sece Art. 746. M is found either by dircct calculation

from the geometrical data, or by a comparison with a pair of coils,

for which this calculation has been made; see Art. 755. Trom
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these three quantities B can be determined in electromagnetic mea-
sure.

These methods involve the determination of the period of vibra-
tion of the galvanometer magnet, and of the logarithmic decrement
of its oscillations.

Weber's Method by Transient Currents*.

760.] A coil of considerable size is mounted on an axle, so as to
be capable of revolving about a vertical diameter, The wire of this
coil 1s connected with that of a tangent galvanometer so as to form
a single circuit. Let the resistance of this circuit be 2. Let the
large coil be placed with its positive face perpendicular to the
magnetic meridian, and let it be quickly turned round half a revo-
lution. There will be an induced current due to the earth’s mag-
netic force, and the total quantity of electricity in this eurrent in
electromagnetic measure will be

=201, (1)
where g, is the magnetic moment of the coil for unit current, which
in the case of a large coill may be determined directly, by mea-
suring the dimensions of the coil, and calculating the sum of the
areas of its windings. # is the horizontal component of terrestrial
magnetism, and K is the resistance of the circuit formed by the
coil and galvanometer together. This current sets the magnet of
the galvanometer in motion,

If the magnet is originally at rest, and if the motion of the coil
occupies but a small fraction of the time of a vibration of the
magnef, then, if we negleet the resistance to the motion of the
magnet, we have, by Art. 748,

I T _ .
Q_5?2S1né9, (2)
where (7 is the constant of the galvanometer, 7' is the time of

-vibration of the magnet, and 6 is the observed elongation. From
these equations we obtain

B 1

=T Gg m . (3)
The value of 71 does not appear in this result, provided 1t 1s the
same at the position of the coil and at that of the galvanometer.
This should not be assumed to be the case, but should be tested by
comparing the time of vibration of the same magnet, first at one of
these places and then at the other.
* Flekt. Maash. ; or Pogg., Ann. Ixxxii, 337 (1851).
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761.] To make a series of observations Weber began with the
coil parallel to the magnetic meridian. He then turned it with its
positive face north, and observed the first elongation due to the
negative current. He then observed the second elongation of the
freely swinging magnet, and on the return of the magnet through
the point of equilibrium he turned the coil with its positive fuce
south, This caused the magnet to recoil to the positive side. The
series was continued as in Art. 750, and the result corrected for
resistance. In this way the value of the resistance of the combined
circuit of the coil and galvanometer was ascertained.

In all such experiments it is necessary, in order to obtain suffi-
ciently large deflexions, to make the wire of copger, a metal which,
though it i1s the best conductor, has the disadvantage of altering
considerably in resistance with alterations of temperature. It is
also very difficult to ascertain the temperature of every part of the
apparatus, Hence, in order to obtain a result of permanent value
from such an experiment, the resistance of the experimental circuit
should be compared with that of a carefully constructed resistance-
coil, both before and after each experiment,

Weber's Method by observing the Decrement of the Oscillations
of a Magnet.

762.] A magnet of considerable magnetic moment is suspended
at the centre of a galvanometer coil. The period of vibration and
the logarithmice decrement of the oscillations is observed, first with
the cirenit, of the galvanometer open, and then with the circuit
closed, and the conductivity of the galvanometer coil is deduced
from the effect which the currents induced in it by the motion of
the magnet have in resisting that motion.

If 7' is the observed time of a single vibration, and A the Na-
pierian logarithmic decrement for each single vibration, then, if we

write
and a = % s (2)
the equation of motion of the magnet is of the form
¢ = Cecos (wi+ ). (3)

This expresses the nature of the motion as determined by observa-
tion. We must compare this with the dynamical equation of
motion.
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Let M be the coefficient of induction between the galvanometer
coil and the suspended magnet. It is of the form
M =G g, Q,0)+ G, Q. (6)+ &e., (4)
where G, G,, &e. are coefticients belonging to the coil, g,,4,, &e.
to the magnet, and @, (9), @, (8), &c., are zonal harmonics of the
angle between the axes of the coil and the magnet. See Art. 700.
By a proper arrangement of the coils of the galvanometer, and by
building up the suspended magnet of several magnets placed side by
side at proper distances, we may cause all the terms of M after the
first to become insensible eompared with the first. If we also put

¢ = g-@, we may write

M = G sin ¢, (5)
where G is the principal coeflicient of the galvanometer, = is the
magnetic moment of the magnet, and ¢ is the angle between the
axis of the magmnet and the plane of the coil, which, in this ex-
periment, is always a small angle.

If L is the coeflicient of self-induction of the coil, and & its
resistance, and y the current in the coil,

d
—['h (Ly+3M)+Ry =0, )
dy dd

or L% +Ry+ Gmcosg W:O. (7

The moment of the force with which the current y acts on the
dé
so small, that we may suppose cos¢p = 1.

Let us suppose that the equation of motion of the magnet when

the circuit is broken is
d 2‘15 B d b
4 Eﬁi Tt A—dt

where 4 is the moment of inertia of the suspended apparatus, B

magnet is y ;0r Gmycos¢. Theangle ¢ is in this experiment

+Cp =0, (8)
a
at
expresses the resistance arising from the viscosity of the air and
of the suspension fibre, &c., and C¢ expresses the moment of the
force amsing from the earth’s magnetism, the torsion of the sus-
pension apparatus, &e., tending to bring the magnet to its position
of equilibrium.
The equation of motion, as affected by the current, will be

d? d
}_ITZE -}-ngZ +Chp = Gmy. (9)

4 dt
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To determine the motion of the magnet, we have to combine this
equation with (7) and eliminate y. The result is _

2
(R+L%)(4%2+B%+0)¢+02m2%§’=o, (10)
a linear differential equation of the third order.

‘We have no occasion, however, to solve this equation, because
the data of the problem are the observed elements of the motion
of the magnet, and from these we have to determine the value
of R.

Let o, and o, be the values of a and o in equation (2) when the
circuit is broken. In this case £ is infinite, and the equation is
reduced to the form (8). We thus find

B =2A4aq,, C = 4 {02+ w2). (11)

Solving equation (10) for %, and writing

%:—(aﬁ—iw), where ¢=4+/—1, (12)
we find
G2 m? atiw .
A a?:;)a—{— 2taw—2ay(atiw) 4 ay? + wy? +L(atio). (13)

Since the value of o is in general much greater than that of a,
the best value of & is found by equating the terms in 7w,

G% m? w? — 2
R=—_ZA(a_ao)+§L(3a—ao___a_a00), (14)

We may also obtain a value of 22 by equating the terms not
involving ¢, but as these terms are small, the equation is useful
only as a means of testing the aceuracy of the observations. From
these equations we find the following testing equation,

G?m? {a? +w?—a2 —0y?}
= L4 {(a—0)* + 2 (a—0g)? (w? + o) + (0 —a?)?}. (15)
Since LA4w* is very small compared with G?»?, this equation

B=

gives W —w? = o —a?; (16)
and equation (14) may be written
G*m?

R = A (a—a) +2La, (17)

In this expression G may be determined either from the linear
measurement of the galvanometer coil, or better, by comparison
with a standard coil, according to the method of Art. 753. A is
the moment of inertia of the magnet and its suspended apparatus,
which is to be found by the proper dynamical method. w, w,, a
and a,, are given by observation.

IRIS - LILLIAD - Université Lille 1



364 UNIT OF RESISTANCE. [763.

The determination of the value of s, the magnetic moment of
the suspended magnet, is the most difficult part of the investigation,
because 1t is affected by temperature, by the earth’s magnetic foree,
and by mechanical violence, so that great care must be taken to
measure this quantity when the magnet is in the very same circum-
stances as when it is vibrating.

The second term of £, that which involves Z, is of less import-
ance, as it is generally small compared with the first term. The
value of L may be determined either by calculation from the known
form of the coil, or by an experiment on the extra-current of in-
duction. See Art. 756,

Thomson’s Method by a Revolving Coil.

763.] This method was suggested by Thomson to the Committee
of the British Association on Electrical Standards, and the ex-
periment was made by M. M. Balfour Stewart, Fleeming Jenkin,
and the author in 1863 ¥,

A circular coil is made to revolve with uniform velocity about a
vertical axis. A small magnet is suspended by a silk fibre at the
centre of the coil. An electric current is induced in the coil by
the earth’s magnetism, and also by the suspended magnet. This
current is periodie, lowing in opposite directions through the wire
of the coil during different parts of each revolution, but the effect of
the current on the suspended magnet 1s to produce a deflexion from
the magnetic meridian in the direction of the rotation of the coil.

764.] Let II be the horizontal component of the earth’s mag-
netism.

Let y be the strength of the current in the coil.

¢ the total area inclosed by all the windings of the wire.

G the magnetic force at the centre of the coil due to unit-
current,

L the coeflicient of self-induction of the coil.

M the magnetic moment of the suspended magnet.

6 the angle between the plane of the coil and the magnetic
meridian.

¢ the angle between the axis of the suspended magnet and
the magnetic meridian

A the moment of inertia of the suspended magnect.

MU+ the coeflicient of torsion of the suspension fibre.

a the azimuth of the magnet when there is no torsion.

£ the resistance of the coil.

* See Report of the British Association for 1863.
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The kinetic energy of the system 1s

T=%Ly*—IHgysin0—MGysin (§—¢)+MHcos p+ 3 Ap2. (1)

The first term, 3 L y?%, expresses the energy of the current as
depending on the coil itself. The second term depends on the
mulual action of the current and terrestrial magnetism, the third
on that of the current and the magnetism of the suspended magnet,
the fourth on that of the magnetism of the suspended magnet and
terrestrial magnetism, and the last expresses the kinetic energy of
the matter composing the magnet and the suspended apparatus
which moves with it.

The potential energy of the suspended apparatus arising from the
torsion of the fibre is

r=2 4 —24a) (2)

The electromagnetic momentum of the current is
r= %: Ly—Ilgsin 9—M Gysin (6 —), (3)
and if & is the resistance of the coil, the equation of the current is
By + jy—fl; =0, (4)
or, since 0 = wt, (5)
(R+Lgé~)y=Hgmcos(9+2|[0[w—4'>)cos(6——¢). (6)

765.] It is the result alike of theory and observation that ¢, the
azimuth of the magnet, is subject to two kinds of periodic variations.
"One of these is a free oscillation, whose periodic time depends on
the inlensity of terrestrial magnetism, and is, in the experiment,
several seconds. The other is a forced vibration whose period is
half that of the revolving coil, and whose amplitude is, as we shall
see, insensible, Hence, in determining y, we may treat ¢ as
sensibly constant.
We thus find
Hyow .
Y= FEg wz(Rcos 9+ Lwsin 9) (7
Mg(o—¢) i s
ot g B OO LD 0=, @)

_E,
4 Ce T, (9)

The last term of this expression soon dies away when the rota-
tion is continued uniform.
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The equation of motion of the suspended magnet is
a1 dr  dv
g 39" a5 to)
whence A ¢—IM Gy cos (B—¢)+MI (sinp+71(p—a)) = 0. (11)
Substituting the value of y, and arranging the terms according
to the functions of multiples of 8, then we know from observation
that
¢ = Ppo+betcosni4-ccos 2 (0— B), (12)
where ¢, is the mean value of ¢, and the second ferm expresses
the free vibrations gradually decaying, and the third the forced
vibrations arising from the variation of the deflecting current.
The value of # in equation (12) is @sec ¢. 'That of ¢, the am-

A
2
plitude of the forced vibrations, is i’%sin ¢. Hence, when the
w

coil makes many revolutions during one free vibration of the magnet,
the amplitude of the forced vibrations of the magnet is very small,
and we may neglect the terms in (11) which involve e.
Beginning with the terms in (11) which do not involve 6, we find
MHGgw . M2@? (0—¢)
RWQ? (R Ccos ¢0 + Lwsin ¢0) + Ea’y ((;):?32‘ R
= MH (sin ¢y + 7 (Py—a)). (13)

Remembering that ¢ is small, and that Z is generally small
compared with Gg, we find as a sufficiently approximate value of £,

Ggo {1+G—MseC¢—%(2—L—l)tan2¢}.(l4)
2tang, (1+r¢_a) 94 g g
0 sin ¢

R=

766.] The resistance is thus determined in electromagnetic mea-
sure in terms of the veloeity o and the deviation ¢. It is not
necessary to determine #, the horizontal terrestrial magnetic foree,
provided it remaing constant during the experiment.

To determine %[ we must make use of the suspended magnet to

deflect the magnet of the magnetometer, as described in Art. 454,
In this experiment M should be small, so that this correction be-
comes of secondary importance.

For the other corrections required in this experiment sece the
Report of the Britisk Association for 1863, p. 168,
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Joule’s Calorimelric Method.

767.] The heat generated by a current y in passing through a
conductor whose resistance is £ is, by Joule’s law, Art. 242,

1
/E:Tl—f]fyzdt, (1)

where J is the equivalent in dynamical measure of the unit of heat
employed.
Hence, if Z is eonstant during the experiment, its value is

Jh

f‘yz dt

This method of determining & involves the determination of Z,
the heat generated by the current in a given time, and of y2, the
square of the strength of the current.

In Joule’s experiments ¥, Z was determined by the rise of tem-
perature of the water in a vessel in which the conducting wire was

R= (2)

immersed. It was corrected for the effects of radiation, &ec. by
alternate experiments in which no ecurrent was passed through the
wire.

The strength of the current was measured by means of a tangent
galvanometer. This method involves the determination of the
intensity of terrestrial magnetism, which was done by the method
described in Art, 457. These measurements were also tested by the
current weigher, deseribed in Art. 726, which measures 32 directly.

The most direct method of measuring f y?dt, however, i1s to pass

the current through a self-acting electrodynamometer (Art. 725)
with a scale which gives readings proportional to 2%, and to make
the observations at equal intervals of time, which may be done
approximately by taking the reading at the extremities of every
vibration of the instrument during the whale course of the experi-
ment.

* Report of the British Association for 1867.
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CHAPTER XIX.

COMPARISON OF THE ELECTROSTATIC WITH THE ELECTRO-
MAGNETIC UNITS.

Determination of the Number of Electrostatic Units of Electricity
wn one Electromagnetic Unit.

~

768.] THE absolute magnitudes of the electrical units in hoth
systems depend on the units of length, time, and mass which we
adopt, and the mode in which they depend on these units is
different in the two systems, so that the ratio of the electrical units
will be expressed by a different number, according to the different
units of length and time.

It appears from the table of dimensions, Art. 628, that the
number of electrostatic units of electricity in one electromagnetic
unit varies inversely as the magnitude of the unit of length, and
directly as the magnitude of the unit of time which we adopt.

If, therefore, we determine a velocity which is represented nu-
merically by this number, then, even if we adopt new units of
length and of time, the number representing this velocity will still
be the number of electrostatic units of eleetricity in one electro-
magnetic unit, according to the new system of measurement,

This velocity, therefore, which indicates the relation between
electrostatic and electromagnetic phenomena, is a natural guantity
of definite magnitude, and the measurement of this quantity is one
of the most important researches in electricity.

To shew that the quantity we are in search of is really a velocity,
we may observe that in the case of two parallel currents the attrac-
tion experienced by a length a of one of them is, by Art. 686,

s @
F=za2cc 3

where C, €’ are the numerical values of the currents in ¢lectromag-
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netic measure, and & the distance between them. If we make

b= 2a, then 7=c0.

Now the quantity of electricity transmitted by the current C in
the time ¢ is C¢ in electromagnetic measure, or zC?¢ in electrostatic
measure, if # 1s the number of electrostatic units in one electro-
magnetic unit.

Let two small conductors be charged with the quantities of
electricity transmitted by the two currents in the time #, and
placed at a distance » from each other. The repulsion between
them will be CO n2 2

B = —

Let the distance 7 be so chosen that this repulsion is equal to the

attraction of the currents, then

7 0 2 42
con’E _ cen.
.

Hence r=mnl;

or the distance » must increase with the time ¢ at the rate =.
Hence = is a velocity, the absolute magnitude of which is the
same, whatever units we assume.

769.] To obtain a physical conception of this velocity, let us ima-
gine a plane surface charged with electricity to the electrostatic sur-
face-density o, and moving in its own plane with a velocity ». This
moving electrified surface will be equivalent to an electric current-
sheet, the strength of the current flowing through unit of breadth

. . . 1 .
of the surface being ov in electrostatic measure, or S ov in elec-

tromagnetic measure, if # is the number of electrostatic units in
one electromagnetic unit. If another plane surface, parallel to the
first, is electrified to the surface-density o/, and moves in the same
direction with the velocity ¢/, it will be equivalent to a second
current-sheet.

The electrostatic repulsion between the two electrified surfaces is,
by Art. 124, 2 wao” for every unit of area of the opposed surfaces.

The electromagnetic attraction between the two current-sheets
is, by Art. 653, 2 wuu’ for every unit of area, » and #” being the
surface-densities of the currents in electromagnetic measure.

1 1 ..
Bat - = ~0o», and # = 2 a’?’, so that the attraction 1s
n

’

vy
n2

’
2moa

VOL. IT. B b
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The ratio of the attraction to the repulsion is equal to that of
vv" to n%.  Hence, since the attraction and the repulsion are quan-
tities of the same kind, » must be a quantity of the same kind as v,
that is, a velocity. If we now suppose the velocity of each of the
moving planes to be equal to n, the attraction will be equal to the
repulsion, and there will be no mechanical action between them.
Hence we may define the ratio of the electric units to be a velocity,
such that two electrified surfaces, moving in the same direction
with this velocity, have no mutual action. Since this velocity is
about 288000 kilometres per second, it is impossible to make the
experiment above described.

770.] If the electric surface-density and the velocity can be made
so great that the magnetic force is a measurable quantity, we may
at least verify our supposition that a moving electrified body is
equivalent to an electric current.

It appears from Art. 57 that an electrified surface in air would
begin to discharge itself by sparks when the electric force 2 nwo
reaches the value 130. The magnetic force due to the current-shect

18 270 = The horizontal magnetic force in Britain is about 0.175.

Hence a surface electrified to the highest degree, and moving with
a velocity of 100 metres per second, would act on a magnet with a
force equal to about one-four-thousandth part of the earth’s hori-
zontal force, a quantity which can be measured. The electrified
surface may be that of a non-conducting disk revolving in the plane
of the magnetic meridian, and the magnet may be placed close to
the ascending or descending portion of the disk, and protected from
its electrostatic action by a screen of metal. I am not aware that
this experiment has been hitherto attempted.

I. Comparison of Units of Electricity.

771.] Since the ratio of the electromagnetic to the electrostatic
unit of electricity is represented by a velocity, we shall in future
denote it by the symbol ». The first numerical determination of
this velocity was made by Weber and Kohlrausch *,

Their method was founded on the measurement of the same
quantity of electricity, first in electrostatic and then in electro-
magnetic measure.

The quantity of electricity measured was the charge of a Leyden
jar. It was measured in electrostatic measure as tlre product of the

* Flektrodynamische Maasbestimmungen ; and Pogg. Ann. xcix, (Aug. 10, 1856.)
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capacity of the jar into the difference of potential of its coatings.
The capaeity of the jar was determined by comparison with that of
a sphere suspended in an open space at a distance from other
bodies. The capacity of such a sphere ™ expressed in electrostatic
measure by its radius. Thus the capacity of the jar may be found
and expressed as a certain length. See Art. 227.

The difference of the potentials of the coatings of the jar was mea-
sured by connecting the coatings with the electrodes of an electro-
meter, the constants of which were carefully determined, so that the
difference of the potentials, Z, became known in electrostatic measure.

By multiplying this by ¢, the eapacity of the jar, the charge of
the jar was expressed in electrostatic measure.

To determine the value of the charge in electromagnetic measure,
the jar was discharged through the coil of a galvanometer. The
effect of the transient current on the magnet of the galvanometer
communicated to the magnet a certain angular velocity. The
magnet then swung round to a certain deviation, at which its
velocity was entirely destroyed by the opposing action of the
earth’s magnetism.

By observing the extreme deviation of the magnet the quantity
of electricity in the current may be determined in electromagnetie
measure, as in Art. 748, by the formula

m7T,_ .
Q='§; 2 sin 30,

where @ is the quantity of electricity in electromagnetic measure.
We have therefore to determine the following quantities :—

H, the intensity of the horizontal component of terrestrial mag-
netism ; see Art. 456.

G, the principal constant of the galvanometer; see Art. 700.

7, the time of a single vibration of the magnet; and

#, the deviation due to the transient current.
The value of v obtained by MM. Weber and Kohlrausch was

v = 310740000 metres per second.

The property of solid dielectrics, to which the name of Electrie
Absorption has been given, renders it difficult to estimate correctly
the capacity of a Leyden jar. The apparent capacity varles ac-
cording to the time which elapses between the charging or dis-
charging of the jar and the measurement of the potential, and the
longer the time the greater is the value obtained for the capacity of
the jar.

Bba
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Hence, since the time occupied in obtainming a reading of the
electrometer is large in comparison with the time during which the
discharge through the galvanometer takes place, it is probable that
the estimate of the discharge in electrostatic measure is too high,
and the value of v, derived from it, is probably also too high.

1I. v expressed as a Resistance.

772.]1 Two other methods for the determination of » lead to an
expression of its value in terms of the resistance of a given con-
ductor, which, in the electromagnetic system, 1s also expressed as a
velocity.

In Sir William Thomson’s form of the experiment, a constant
current is made to flow through a wire of great resistance. The
electromotive force which urges the current through the wire is mea-
sured electrostatically by connecting the extremities of the wire with
the electrodes of an absolute electrometer, Arts. 217, 218. 'The
strength of the current in the wire is measured in electromagnetic
measure by the deflexion of the suspended coil of an electrodyna-
mometer through which it passes, Art. 725. The resistance of the
circuit is known in electromagnetic measure by comparison with a
standard eoil or Ohm. By multiplying the strength of the current
by this resistance we obtain the electromotive force in electro-
magnetic measure, and from a comparison of this with the electro-
static measure the value of v is obtained.

This method requires the simultaneous determination of two
forces, by means of the electrometer and electrodynamometer re-
spectively, and it is only the ratio of thcese forces which appears in
the result.

773.] Another method, in which these forees, instead of being
separately measured, are directly opposed to each other, was em-
ployed by the present writer. The ends of the great resistance coil
are connected with two parallel disks, one of which is moveable,
The same difference of potentials which sends the current through
the great resistance, also causes an attraction between these disks.
At the same time, an electric current which, in the actual experi-
ment, was distinct from the primary current, is sent through two
coils, fustened, one to the back of the fixed disk, and the other to
the back of the moveable disk. The current flows in opposite
directions through these coils, so that they repel one another. By
adjusting the distance of the two disks the attraction is exactly
balanced by the repulsion, while at the same time another observer,
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by means of a differential galvanometer with shunts, determines
the ratio of the primary to the secondary current.

In this experiment the only measurement which must be referred
to a material standard is that of the great resistance, which must
be determined in absolute measure by comparison with the Ohm.
The other measurements are required only for the determination of
ratios, and may therefore Le determined in terms of any arbitrary
unit.

Thus the ratio of the two forces is a ratio of equality.

The ratio of the two currents is found by a comparison of resist-
ances when there is no deflexion of the differential galvanometer.

The attractive force depends on the square of the ratio of the
diameter of the disks to their distance.

The repulsive force depends on the ratio of the diameter of the
coils to their distance.

The value of » is therefore expressed directly in terms of the
resistance of the great coil, which is itself compared with the Ohm.

The value of , as found by Thomson’s method, was 28.2 Ohms *
by Maxzwell’s, 28.8 Ohms t.

III. Electrostatic Capacity in Electromagnetic Measure.

774.] The capacity of a condenser may be ascertained in electro-
magnetic measure by a comparison of the electromotive force which
produces the charge, and the quantity of electricity in the current
of discharge. By means of a voltaic battery a current is maintained
through a circuit containing a coil of great resistance. The con-
denser 1s charged by putting its electrodes in contact with those of
the resistance coil. The current through the coil is measured by
the deflexion which it produces in a galvanometer. Let ¢ be this
deflexion, then the current is, by Art. 742,

T = —; tan ¢,

G

where # is the horizontal component of terrestrial magnetism, and
G is the principal constant of the galvanometer.

If 2 is the resistance of the coil through which this current is
made to flow, the difference of the potentials at the ends of the

coil 1s E = Ry,

* Repori of British Association, 1869, p. 434,
+ Phil. Trans., 1868, p. 643; and Report of British Association, 1869, p. 436.
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and the charge of electricity produced in the condenser, whose
capacity in electromagnetic measure is C, will be
Q = BC.

Now let the electrodes of the condenser, and then those of the
galvanometer, be disconnected from the circuit, and let the magnet
of the galvanometer be brought to rest at its position of equili-
brium. Then et the electrodes of the condenser be connected with
those of the galvanometer. A transient current will flow through
the galvanometer, and will cause the magnet to swing to an ex-
treme deflexion 8. Then, by Art. 748, if the discharge is equal to
the charge, T

Q= ﬁ—;2sm§9.

We thus obtain as the value of the capacity of the condenser in
electromagnetic measure
0 Z 12 sin 30 )
7w £ tang

The capacity of the condenser is thus determined in terms of the
following quantities :—

7, the time of vibration of the magnet of the galvanometer from
rest to rest.

R, the resistance of the coil.

8, the extreme limit of the swing produced by the discharge.

¢, the constant deflexion due to the current through the coil £.
This method was employed by Professor Fleeming Jenkin in deter-
mining the capacity of condensers in electromagnetic measure *,

If ¢ be the capacity of the same condenser in electrostatic mea-
sure, as determined by comparison with a condenser whose capacity
can be ealculated from its geometrical data, -

C=2)20.
¢ tand¢
H 2 = - —
ence v T 7 2010

The quantity » may therefore be found in this way. It depends
on the determination of B in electromagnetic measure, but as it
involves only the square root of &, an error in this determination
will not affect the value of # so much as in the method of Arts.
772, 773.

Intermittent Current.

775.] If the wire of a battery-circuit be broken at any point, and

* Report of British Association, 1867,
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the broken ends connected with the electrodes of a condenser, the
current will flow into the condenser with a strength which dimin-
ishes as the difference of the polentials of the condenser increases,
so that when the condenser has received the full charge corre-
sponding to the electromotive force acting on the wire the current
ceases entirely.

If the electrodes of the condenser are now disconnected from the
ends of the wire, and then again connected with them in the
reverse order, the condenser will discharge itself through the wire,
and will then become recharged in the opposite way, so that a
transient current will flow through the wire, the total quantity of
which 1s equal to two charges of the condenser.

By means of a piece of mechanism (commonly called a Commu-
tator, or wippe) the operation of reversing the connexions of the
condenser can be repeated at regular intervals of time, each interval
being equal to 7. If this interval is sufficiently long to allow of
the complete discharge of the condenser, the quantity of electricity
transmitted by the wire in each interval will be 2 £ C, where & is
the electromotive force, and C is the capacity of the condenser.

If the magnet of a galvanometer included in the cireuit is loaded,
so as to swing so slowly that a great many discharges of the con-
denser occur in the time of one free vibration of the magnet, the
succession of discharges will act on the magnet like a steady current
whose strength is 2 EC

17

If the condenser is now removed, and a resistance coil substituted
for it, and adjusted till the steady current through the galvano-
meter produces the same deflexion as the succession of discharges,
and if R is the resistance of the whole circuit when this is the case,

E _2EC, .

[ 1
£ Vi (1)
T

= . 2
or R 50 (2)

We may thus compare the condenser with its commutator in
motion to a wire of a certain electrical resistance, and we may make
use of the different methods of measuring resistance described in
Arts. 345 to 357 in order to determine this resistance.

776.] For this purpose we may substitute for any one of the
wires in the method of the Differential Galvanometer, Art. 346, or
in that of Wheatstone's Bridge, Art. 347, a condenser with its com-
mutator. Let us suppose that in either case a zero deflexion of the
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galvanometer has been obtained, first with the condenser and com-
mutator, and then with a coil of resistance £, in its place, then
the quantity 210 will be measured by the resistance of the circuit of
which the coil £, forms part, and which is completed by the re-
mainder of the conducting system including the battery. Hence
the resistance, &, which we have to calculate, is equal to 7;, that
of the resistance coil, togetber with R,, the resistance of the re-
mainder of the system (including the battery), the extremities of
the resistance coil being taken as the electrodes of the system.

In the cases of the differential galvanometer and Wheatstone’s
Bridge it is not necessary to make a second experiment by substi-
tuting a resistance coil for the condenser. The value of the resist-
ance required for this purpose may Le found by calculation from
the other known resistances in the system.

Using the notation of Art. 347, and supposing the condenser
and commutator substituted for the conductor 4C in Wheatstone’s
Bridge, and the galvanometer inserted in O4, and that the deflexion
of the galvanometer is zero, then we know that the resistance of a
coil, which placed in 4C would give a zero deflexion, is

b=%=131. (3)

The other part of the resistance, R,, is that of the system of con-
ductors 40, OC, 4B, BC and OB, the points 4 and C being con-
sidered as the electrodes. Hence
£, 2 BCra) ol rotraleta) "
2T e+ (y+a)+B(c+aty+a)

In this expression o denotes the internal resistance of the battery
and its connexions, the value of which cannot be determined with
certainty ; but by making it small compared with the other resist-
ances, this uncertainty will only slightly affect the value of £,.

The value of the capacity of the condenser in clectromagnetic
measure is p

C= — - 5

2 (R + 12y) (5)

777.] If the condenser has a large capacity, and the commutator
is very rapid in its action, the condenser may not be fully discharged
at each reversal. The equation of the electric current during the
discharge is Q+RC %g LEC =0, (6)

where @ is the charge, C the capacity of the condenser, &, the
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resistance of the rest of the system between the electrodes of the
condenser, and Z the electromotive force due to the connexions
with the battery.

14
Ilence Q = (Q,+EC)e BE_EC, (7)
where @), is the initial value of .
If 7 is the time during which contact is maintained during each
discharge, the quantity in each discharge is

T
1—e 2O

Q=2EC (8)

14¢ BE
By making ¢ and y in equation (4) large compared with 8, a, or
a, the time represented by £,0 may be made so small compared
with 7, that in calculating the value of the exponential expression
we may use the value of € in equation (5). We thus find
T L + A, x, (9)
RO £, 7
where 2] is the resistance which must be substituted for the con-
denser 1o produce an equivalent effect. Z£, is the resistance of the
rest, of the system, 7 1s the interval between the beginning of a
discharge and the beginning of the next discharge, and 7 is the
doration of contact for each discharge. We thus obtain for the
corrected value of € in electromagnetic measure

_plitRyr
T 1+e Ry T

C=1 . (10)
Rt

IV. Comparison of the Electrostatic Capacily of o Condenser with
the Electromagnetic Capacity of Self-induction of a Coil.

778.] If two points of a conducting
circuit, between which the resistance is
R, are connected with the electrodes of
a condenser whose capacity is C, then,
when an electromotive force acts on the
circuit, part of the current, instead of
passing through the resistance £, will

be employed in charging the condenser. 24
The current through A will therefore
e oar ; 57111\
rise to its final value from zero in a

Fig. 64.

gradual manner. It appears from the
mathematical theory that the manner in which the current through
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I rises from zero to its final value is expressed by a formula of
exactly the same kind as that which expresses the value of a cur-
rent urged by a constant electromotive force through the coil of an
electromagnet. Hence we may place a condenser and an electro-
magnet on two opposite members of Wheatstone’s Bridge in such
a way that the current through the galvanometer is always zero,
even at the instant of making or breaking the battery circuit.

In the figure, let P, @, £, § be the resistances of the four mem-
bers of Wheatstone’s Bridge respectively. Let a coil, whose coeffi-
cient of self-induction is Z, be made part of the member 4H, whose
resistance 1s @, and let the electrodes of a condenser, whose capacity
is C, be connected by pieces of small resistance with the points #
and Z. For the sake of simplicity, we shall assume that there is no
current in the galvanometer 7, the electrodes of which are con-
nected to # and /. 'We have therefore to determine the condition
that the potential at /' may be equal to that at . It is only when
we wish to estimate the degree of accuracy of the method that we
require to calculate the current through the galvanometer when
this condition is not fulfilled.

Let z be the total quantity of electricity which has passed
through the member 4F, and # that which has passed through FZ
at the time ¢, then #—2 will be the charge of the condenser. The
electromotive force acting between the electrodes of the condenser

is, by Ohm’s law, Rg;, so that if the capacity of the condenser
18 C; x—z:RC% (1)
Let g be the total quantity of electricity which bas passed through
the member 477, the electromotive force from 4 to A must be equal

to that from 4 to F, or
P (2)

Catla=Ta
Since there is no current through the galvanometer, the quantity
which has passed through HZ must be also 7, and we find
dy dz
A . 3
8 d¢ £ dt ®
Substituting in (2) the value of 2, derived from (1), and eom-

dy diy _ o dw

paring with (3), we find as the condition of no current through the
galvanometer

d

RQ(1+%%):8P(1+RCW . (4)
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The condition of no final current is, as in the ordinary form of

‘Wheatstone’s Bridge, QR = SP. (5)

The condition of no current at making and breaking the battery
connexion is L

0= RC. (6)

Here L and £C are the time-constants of the members @ and &

¢

respectively, and if, by varying @ or R, we can adjust the members
of Wheatstone’s Bridge till the galvanometer indicates no current,
either at making and breaking the circuit, or when the current is
steady, then we know that the time-constant of the coil is equal to
that of the condenser.

The coefficient of self-induction, Z, can be determined in electro-
magnetic measure from a comparison with the coefficient of mutual
induction of two circuits, whose geometrical data are known
(Art, 756). It is a quantity of the dimensions of a line.

The capacity of the condenser can be determined in electrostatic
measure by comparison with a condenser whose geometrical data
are known (Axrt. 229). This quantity is also a length, c. The elec-
tromagnetic measure of the capacity is

e
C=5- (7)

Substituting this value in equation (8), we obtain for the value

of 2

0 = % QR (8)

where ¢ is the capacity of the condenser in electrostatic measure,
L the coefficient of self-induction of the coil in electromagnetic
measure, and @ and 2 the resistances in electromagnetic measure.
The value of v, as determined by this method, depends on the
determination of the unit of resistance, as in the second method,
Arts. 772, 773.

V. Combination of the Electrostatic Capacily of a Condenser with
the Electromagnetic Capacity of Self-induction of a Coil.

779.] Let C be the capacity of the condenser, the surfaces of
which are connected by a wire of resistance . In this wire let the
coils Z and Z’ be inserted, and let Z denote the sum of their ca-
pacities of self-induction. The coil Z’ is hung by a bifilar suspen-
sion, and consists of two coils in vertical planes, between which
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passes a vertical axis which carries the magnet M, the axis of which
revolves in a horizontal plane between the coils L'L. The coil L
has a large coefficient of self-induction, and is fixed. The sus-
pended coil Z” 18 protected from the
currents of air caused by the rota-
tion of the magnet by enclosing the
rotating parts in a hollow case.

The motion of the magnet causes
currents of induction in the coil, and
these are acted on by the magnet,
so that the plane of the suspended
coil 1s deflected in the direction of
the rotation of the magnet. ILet
us determine the strength of the
induced currents, and the magnitude
of the deflexion of the suspended
coil. ’

Let z be the charge of electricity
on the upper surfuce of the condenser C, then, if ¥ is the electro-
motive force which produces this charge, we have, by the theory of
the condenser, z = CE 1)

Fig. 65.

‘We have also, by the theory of electric currents,
Ra‘c—}-{%(La’:—{-ﬂ[cosB)%—E: 0, (2)

where I is the electromagnetic momentum of the cireuit Z/, when
the axis of the magnet is normal to the plane of the coil, and 6 is
the angle between the axis of the magnet and this normal.

The equation to determine 2 is therefore

dx dz . do
Cf/;jﬂ—fCR% +m=Cﬂ[smﬂﬂ- (3)

If the coil is in a position of equilibrium, and if the rotation of
the magnet is uniform, the angular velocity being #,
0 = xt. (4)
The expression for the current consists of two parts, one of which
is independent of the term on the right-hand of the equation,
and diminishes according to an exponential function of the time.
The other, which may be called the forced current, depends entirely
on the term in 6, and may be written

& = Asinf 4 Bcosf. (5)
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Finding the values of 4 and B by substitution in the equation (3),
we obtain RCnr cosf—(1—CLn?)sing
= MCOn 222X . 6
@ = MCn RO+ (1 —CLn%)? (6)
The moment of the foree with which the magnet acts on the coil
L’, in which the current # is flowing, is

© =d:gé(ﬂ[cosﬂ) =Msin6%- (7)
Integrating this expression with respect to #, and dividing by ¢,
we find, for the mean value of ©,
— M2RC%n?
© =3 pon L= cray ®
If the coil has a considerable moment of inertia, its forced vibra-
tions will be very small, and its mean deflexion will be proportional
to .
Let D,, D,, D, be the observed deflexions corresponding to an-
gular velocities n, #,, n, of the magnet, then in general

P = (i—CLu)r+EC, (9)

where P is a constant.
Eliminating P and 2 from three equations of this form, we find

n, 3 71,3 7,3
1 N (2 —ng®) + 1%('”32 —u?)+ j)d_ (m,® —ng?)
L= =2 2 2 . (10)
n?ntng® ny

P n
D, (7" —ng") + jg (5" —n,%) + ]): (22 —n5?)
2

If #, is such that CL#,% = 1, the value of%— will be 2 minimum
for this value of #. The other values of # should be taken, one
greater, and the other less, than #,.

The value of CL, determined from this equation, is of the dimen-
sions of the square of a time. Let us call it 72.

If C, be the electrostatic measure of the capacity of the con-
denser, and Z,, the electromagnetic measure of the self-induction of
the coil, both C, and Z,, are lines, and the product

C, L, =v*C L, = +?C, L, = vir?; (11)
and 2% = QT;”‘, (12)
T

where 12 is the value of C%L%, determined by this experiment. The
experiment here suggested as a method of determining v is of the
same nature as one described by Sir W, R. Grove, Piil. May.,

IRIS - LILLIAD - Université Lille 1



382 COMPARISON OF UNITS. [780.

March 1868, p. 184. See also remarks on that experiment, by the
present writer, in the number for May 1868.

VI. Electrostatic Measurement of Resistance. (Seé Art, 355.)

780.] Let a condenser of capacity C be discharged through a
conductor of resistance 2, then, if # is the charge at any instant,

z dz
Z LR 0. 1
gtlo=0 (1)
¢
Hence @ = zye BC. (2)

If, by any method, we can make contact for a short time, which
is accurately known, so as to allow the current to flow through the
conductor for the time ¢, then, if £, and Z] are the readings of an
electrometer put in connexion with the condenser before and after

the operation, RC(log, B,—log. E,) = ¢. (3)

If C is known in electrostatic measure as a linear quantity, &
may be found from this equation in electrostatic measure as the
reciprocal of a velocity.

If 2, is the numerical value of the resistance as thus determined,
and £, the numerical value of the resistance in electromagnetic
measure, R,

v?2 = ]—ﬂ,— - (4)

Since it is necessary for this experiment that & should be very
great, and since A must be small in the electromagnetic experi-
ments of Arts. 763, &c., the experiments must be made on separate
conductors, and the resistance of these conductors compared by the
ordinary methods.
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ELECTROMAGNETIC THEORY OF LIGHT.

781.] Ix several parts of this treatise an attempt has been made
to explain electromagnetic phenomena by means of mechanical
action transmitted from one body to another by means of a medium
occupying the space between them. The undulatory theory of light
also assumes the existence of a medium. We have now to shew
that the properties of the electromagnetic medium are identical with
those of the luminiferous medium.

To fill all space with a new medium whenever any new phe-
nomenon is to be explained is by no means philosophical, but if
the study of iwo different branches of science has independently
suggested the idea of a medium, and if the properties which must
be attributed to the medium in order to account for electro-
magnetic phenomena are of the same kind as those which we
attribute to the luminiferous medium in order to account for the
phenomena of light, the evidence for the physical existence of the
medium will be considerably strengthened.

But the properties of bedies are capable of quantitative measure-
ment. We therefore obtain the numerieal value of some property of
the médium, such as the velocity with which a disturbance 1s pro-
pagated through it, which can be calculated from electromagnetic
experiments, and also observed directly in the case of light. If it
should be found that the velocity of propagation of electromagnetic
disturbances is the same as the velocity of light, and this not only
in air, but in other transparent media, we shall have strong reasons
for believing that light is an electromagnetic phenomenon, and the
combination of the optical with the electrical evidence will produce
a conviction of the reality of the medium similar to that which we
obtain, in the case of other kinds of matter, from the combined
evidence of the senses.
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782.] When light is emitted, a certain amount of energy is
expended by the luminous body, and if the light is absorbed by
another body, this body becomes heated, shewing that it has re-
ceived energy from without. During the interval of time after the
light left the first body and before it reached the second, it must
have existed as energy in the intervening space.

According to the theory of emission, the transmission of energy
is effected by the actual transference of light-corpusecules from the
luminous to the illuminated body, earrying with them their kinetic
energy, together with any other kind of energy of which they may
be the receptacles.

According to the theory of undulation, there is a material medium
which fills the space between the two bodies, and it is by the action
of contiguous parts of this medium that the energy is passed on,
from oue portion to the next, till it reaches the illuminated body.

The luminiferous medium is therefore, during the passage of light
through it, a receptacle of energy. In the undulatery theory, as
developed by Huygens, Fresnel, Young, Green, &ec., this energy
is supposed to be partly potential and partly kinetic. The potential
energy 1s supposed to be due to the distortion of the elementary
portions of the medium. We must therefore regard the medium as
elastic. The kinetic energy is supposed to be due to the vibratory
motion of the medium. We must therefore regard the medium as
having a finite density.

In the theory of electricity and magnetism adopted in this
treatise, two forms of energy are recogmised, the electrostatic and
the electrokinetic (see Arts. 630 and 636), and these are supposed
to have their seat, not merely in the electrified or magnetized
bodies, but in every part of the surrounding space, where electric
or magnetic force is observed to act. Hence our theory agrees
with the undulatory theory in assuming the existence of a medium
which is capable of becoming a receptacle of two forms of energy *.

783.] Let us next determine the conditions of the propagation
of an electromagnetic disturbance through a uniform medium, which
we shall suppose to be at rest, that is, to have no motion except that
which may be involved in electromagnetic disturbances.

* ¢ For my own part, considering the relation of a vacuum to the magnctic force,
and the general character of magnetic phenomena external to the magnet, I am more
inclined to the notion that in the transmission of the force thero is such an action,
external to the magnet, than that the effects are merely attraction and repulsion at a
distance, Such an acticn may be a function of the sther; for it is not at all unlikely

that, if there be an wmther, it should have other uses than simply the conveyance of
radiations.” —Faraday's Erperimental Researches, 3075,
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Let € be the specific eonductivity of the medium, K its specific
capacity for clectrostatie induction, and u its magnetic ° perme-
ability.’

To obtain the general equations of electromagnetic disturbance,
we shall express the true current € in terms of the vector potential
9l and the electric potential ¥.

The true current & is made up of the conduction current £ and
the variation of the electrie displacement ®, and since both of these
depend on the electromotive force @, we find, as in Art. 611,

R EAY ™)

But since there is no motion of the medium, we may express the
electromotive force, as in Art. 599,

@f:—%'l V. (2)
Hence @:—(C+ in {Zt) ((ZQI+V‘-IJ)- (3)

But we may determine a relation between § and [ in a different
way, as is shewn in Art. 616, the equations (4) of which may be

written Anul = VIY 4+ VJ, (4)
her 4, 4G di (5)
where _dm_*-dg/_*_dz.
Combining equations (3) and (4), we obtain
d~ AU
p(4nC+K%) (Ti? +V¥) +V2U+ VI =0, (6)
which we may express in the form of three equations as follows—
d~ AdF  d¥ dJ 1
) (= v?
p.(‘i‘n’C-}-Kdt)(dt )+ I‘+d =0, ‘
, d dG d\P v dJ
(Z\P . dJ
,L(4nC+Kdt)( + ) +VEH 4+ - =0. ]

These are the general equations of clectromagnetic disturbances.
If we differentiate these equations with respect to z, y, and 2
respectively, and add, we obtain

d J
;L(47rC+Kd—t)(il—t —V2‘P)=0. (8)

If the medium is a noun-conductor, ¢ = 0, and V2¢¥, which 1s
proportional te the volume-density of free electrieity, is independent
of . Hence J must be a linear function of #, or a constant, or zero,
and we may therefore leave J and ¥ out of account in considering
periodic disturbances.

YOL. I1. cce
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Propagation of Undulations in o Non-conducting Mediuz.
784.7 In this case €= 0, and the cquations become
dzF

el 2 —
Ku W+V F=o,
d2q
—_— VZJ: 9
wom VG =0,y ®)
K ‘ZLQIJrVZH_oJ

The equations in this form are similar to those of the motion of
an elastic solid, and when the initial conditions are given, the
solution can be expressed in a form given by Poisson *, and applied
by Stokes to the Theory of Diffraction .

1

Let us write V=——. (10)
VEg
If the values of F, G, H, and of —- dF dG, ait are given at every

dt ~ dt

point of space at the epoch (¢ = O), then we can determine their
values at any subsequent time, ¢, as follows.

Let O be the polnt for which we wish to determine the value

of F at the time £. With O as centre, and with radius 7¢, describe

a sphere. Find the initial value of ' at every point of the spherical

surface, and take the mean, F, of all these values. Find also the

.o ra . .

initial values of % at every point of the spherical surface, and let
ar

the mean of these values be

T
Then the value of # at the point O, at the time 7, is
d . dF
F= n (Ft) +¢ i
. d = dGq
: _ @ et 11
Similarly & zZ,(Gé)+t(Zl | (11)
I = —(HI,‘\«H‘ZH J

783.] Tt appears, therefore, that the condition of things at the
point O at any instant depends on the condition of things at a
distance ¢ and at an interval of time £ previously, so that any
disturbance is propagated through the medium with the velocity 7.

Let us suppose that when ¢ is zero the quantities 91 and 9 are

* Mém. de I'4 cad., tom. iii, p. 130.
+ Cambridge Transactions, vol. ix, p. 10 (1850).
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zero except within a certain space S§. Then their values at O at
the time £ will be zero, unless the sphericul surface described about
O as centre with radius 77 lies in whole or in part within the
space 8. If O is outside the space § there will be no disturbance
at O until ¢ becomes equal to the shortest distance from O to the
space 8. The disturbance at O will then begin, and will go on till
V't is equal to the greatest distance from O to any part of §. The
disturbance at O will then cease for ever.

786.] The quantity ¥, in Art. 793, which expresses the velocity
of propagation of electromagnetie disturbances in a non-conducting

medium is, by equation (9), equal to IT .
VEKp
If the medium is air, and if we adopt the electrostatic system

1 .
of measurement, K =1 and u = gz 50 that 7= v, or the velocity

of propagation is numerically equal to the number of electrostatic
units of electricity in one electromagnetic unit. If we adopt the

electromagnetic system, X = ;17 and g =1, so that the equation
V= v 1is still true.

On the theory that light is an electromagnetic disturbance, pro-
pagated in the same medium through which other electromagnetic
actions are transmitted, 7 must be the velocity of light, a quantity
the value of which has been estimated by several methods. On the
other band, v is the number of electrostatic units of electricity in one
electromagnetic unit, and the methods of determining this quantity
have been described in the lust chapter. They are quite inde-
pendent of the methods of finding the veloeity of light. Hence the
agreement or disagreement of the values of / and of v furnishes a
test of the electromagnetie theory of light.

787.] In the following table, the principal results of direct
observation of the velocity of light, either through the air or
through the planetary spaces, are compared with the principal
results of the comparison of the electric units :—

Velocity of Light (metres per second). Ratio of Electric Units.
Fizeau ..................... 314000000 | Weber...... 310740000
Aberration, &e., and

Sun’s Parallax
Fouwecault .................. 298360000 | Thomson... 282000000.

} 308000000 | Maxwell ... 288000000

It is manifest that the velocity of light and the ratio of the units
are quantities of the same order of magnitude. Neither of them
cce2
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338 ELECTROMAGNETIC THEORY OF LIGHT. [788.

can be said to be determined as yet with such a degree of accuracy
as to enable us to assert that the one is greater or less than the
other. Itisto be hoped that, by further experiment, the relation be-
tween the magnitudes of the two quantities may be more accurately
determined.

In the meantime our theory, which asserts that these two quan-
tities are equal, and assigns a physical reason for this equalily, is
certainly not eontradicted by the comparison of these results such
as they are.

788.] In other media than air, the velocity 7 is inversely pro-
portional to the square root of the product of the dielectric and the
magnetic inductive capacities. According to the undulatory theory,
the velocity of light in different media is inversely proportional to
their indices of refraction.

There are no transparent media for which the magnetic capacity
differs from that of air more than by a very small fraction. Hence
the principal part of the difference between these media must depend
on their dielectric capacity. According to our theory, therefore,
the dielectric capacity of a transparent medium should be equal to
the square of its index of refraction.

But the value of the index of refraction is different for light of
different kinds, being greater for light of more rapid vibrations.
‘We must therefore select the index of refraction which corresponds
to waves of the longest periods, because these are the only waves
whose motion can be compared with the slow processes by which
we determine the capacity of the dielectric.

789.7 The only dielectric of which the capacity has been hitherto
determined with sufficient accuraey is paraflin, for which in the solid
form M. M. Gibson and Barclay found *

K = 1.975. (12)

Dr. Gladstone has found the following wvalues of the index of
refraction of melted paraffin, sp. g.0.779, for the lines 4, D and H :—

Temperature A D I
54°C ‘ 1.4308 ' 1.4357 1.4499
57°C | 1.4294 | 1.4343 |  1.4493;
from which I find that the index of refraction for wuves of infinite
length would be about 1.422.
The square root of X is 1.405.

The difference between these numbers is greater than can be ac-

* Phil. Trans. 1871, p. 573.
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counted for by errors of observation, and shews that our theories of
the structure of bodies must be much improved before we can
deduce their optical from their electrical properties. At the same
time, I think that the agreement of the numbers is such that if no
greater discrepancy were found between the numbers derived from
the optical and the electrical properties of a considerable number of
substances, we should be warranted in concluding that the square
root of K, though it may not be the complete expression for the
index of refraction, is at least the most important term in it.

Plone Waves.

790.] Let us now confine our attention to plane waves, the front
of which we shall suppose normal to the axis of 2. All the quan-
tities, the variation of which constitutes such waves, are functions
of z and ¢ only, and are independent of # and . Hence the equa-
tions of maguetic induction, (A), Art. 591, are reduced to

A0
or the magnetic disturbance is in the plane of the wave. This
agrees with what we know of that disturbance which constitutes
light.

Putting na, ug and py for @, & and ¢ respectively, the equations
of electric currents, Art. 607, become

=)
T T T T
4‘”#0 = (l‘zz—dj—G7 t (14)
de dz?
4mpw = 0. J

Hence the electric disturbance is also in the plane of the wave, and
if the magnetic disturbance is confined to one direction, say that of
x, the electric disturbance is confined to the perpendicular direction,
or that of y.

But we may calculate the electrie disturbance in another way,
for if £, g, % are the components of electric displacement in a non-
conducting medinm

daf oy __dhk .
u.._—d—t, ?z—di’ w_(l—t- (10)
If P, @, R are the components of the electromotive force
K K K .
S — W o— — - 16
‘/——4711)’ g_iﬂQ, w—irr]l’ \‘{)
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390 ELECTROMAGNETIC THEORY OF LIGHT. [791.

and since there is no motion of the medium, equations (B), Art. 598,

dr daq afl
become P _ —_ ?ZZ, Q = —?Z'[’ .R :_ZZ . (17)
K d*r K d*@ K d*F
Honco w=— Zms v=—y um w=—y uz (18)

Comparing these values with those given in equation (14), we find

d*F d2F
W=K“W’}
a2 a2 G
aE =g (19)
A2 H
0= |

The first and second of these equations are the equations of pro-
pagation of a plane wave, and their solution is of the well-known
form F=fi(z-FVO+1/,(e+ Vé),}

G=/(z—F)+fs(e+ V1)

The solution of the third equation is

KuH = 4+ B¢, (21)
where 4 and B are functions of 2. H is therefore either constant
or varies directly with the time. In neither case can it take part
in the propagation of waves.

791.] It appears from this that the directions, both of the mag-
netic and the electric disturbances, lie in
the plane of the wave, The mathematical
form of the disturbance therefore, agrees
with that of the disturbance which consti-
tutes light, in being transverse to the di-
rection of propagation.

If we suppose G = 0, the disturbance
will correspond to a plane-polarized ray of
light.
= The magnetic force is in this case paral-
lel to the axis of y and equal to ! C{J(, and

w dz
\ the electromotive force is parallel to the

T

(20)

‘75. The mag-

Fig. 66. netic force is therefore in a plane perpen-
dicular to that which contains the electrie foree.

The values of the magnetic force and of the clectromotive force at

a given instant at different points of the ray are represented in Fig.66,

axis of # and equal to —
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for the case of a simple harmonic disturbance in one plane. This
corresponds to a ray of plane-polarized light, but whether the plane
of polarization corresponds to the plane of the magnetic disturbance,
or to the plane of the electric disturbance, remains to be seen. See
Art. 797.

Energy and Stress of' Rudiation.

792.] The electrostatic energy per unit of volume at any point of
the wave in a non-conducting medium is

K K dF
1 — 2 p__ 20"
2/ P = 81rP T 8w dt (22)
The clectrokinetic energy at the same point is
1 1, L dFp?
b= b= - — | . 23
87rbﬁ 8w 87w dz (23)

In virtue of equation (8) these two expressions are equal, so that at
every point of the wave the intrinsic energy of the medium is half
electrostatic and half electrokinetic.

Let p be the value of either of these quantities, that is, either the
electrostatie or the electrokinetic encrgy per unit of volume, then,
in virtue of the electrostatic state of the medium, there is a tension
whose magnitude 1s 2z, in a direction parallel to #, combined with a
pressure, also equal to p, parallel to ¥y and 2. See Art. 107.

In virtue of the electrokinelic state of the medium there is a
tension equal to p in a direction parallel to y, comlined with a
pressure equal to p In directions parallel to z and 2. See Art. 643.

Hence the combined cffect of the electrostutic and the electro-
kinetic stresses is a pressure equal to 2p in the direction of the
propagation of the wave. Now 2p also cxpresses the whole energy
in unit of volume,

Ilence in a medium in which waves are propagated there is a
pressure in the direction normal to the waves, and numerically
equal to the energy in unit of volume.

793.] Thus, if in strong sunlight the energy of the light which
falls on one square foot is 83.4 foot pounds per second, the mean
energy in one cubic foot of sunlight is about 0.0000000882 of a foot
pound, and the mean pressure on a square foot is 0.0000000882 of a
pound weight. A flat body exposed to sunlight would experience
this pressure on its illuminated side only, and would therefore be
repelled from the side on which the Light falls. Tt is probable that
a much greater energy of radiation might be obtained by means of
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392 ELECTROMAGNETIC THEORY OF LIGHT. [794-

the concentrated rays of the electric lamp. Such rays falling on a
thin metallic disk, delicately suspended in a vacuum, might perhaps
produce an observable mechanical effeet. When a disturbance of
any kind consists of terms involving sines or cosines of angles
which vary with the time, the maximum energy is double of the
mean energy. Hence, if P is the maximum electromotive force,
and 8 the maximum magnetic force which are called into play
during the propagation of light,
51’2 = éIL—”BZ = mean energy in unit of volume. (24)

With Pouillet’s data for the energy of sunlight, as quoted by
Thormson, Lrans. K. 8. I]., 1854, this gives in electromagnetic mea-~
sure

P = 60000000, or about 600 Daniell’s cells per métre ;

B = 0.193, or rather more than a tenth of the horizontal mag-
netic forece in Britain.

Propagation of a Plane Wave in a Crystallized Medium.

794.7 In calculating, from data furnished by ordinary electro-
magnetic experiments, the electrical phenomena which would result
from periodie disturbances, millions of millions of which oceur in a
second, we have already put our theory to a very severe test, even
when the medium is supposed to be air or vacuum. But if we
attempt to extend our theory to the case of dense media, we become
involved not only in all the ordinary difficulties of molecular theories,
but in the deeper mystery of the relation of the molecules to the
electromagnetic medium.

To evade these difficulties, we shall assume that in certain media
the specific capacity for electrostatic induction is different in dif-
ferent directions, or in other words, the electric displacement, in-
stead of being in the same direction as the electromotive force, and
proportional to it, is related to it by a system of linear equations
similar to those given in Art. 297. It may be shewn, as in
Art. 436, that the system of coeflicients must be symmetrical, so
that, by a proper choice of axes, the equations become

1 1 1
S= 6D r= Kl h= KGR ()

where K|, K,, and K, are the principal inductive capacities of the
medium. The equations of propagation of disturbances are therefore
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a2 r + d*F  42@ d*H d?F d2¥
ey ma N (E )

2G| 2G  BPH EF e ‘
P o A (i =) (2)
d2il  d*H d2F d2q a2fl  d2e

CE I il vy il A ity ey

795.1 If 2, m, n are the direction-cosines of the normal to the
wave-front, and ¥ the velocity of the wave, and if
let-my +ne =V = w, (3)
and if we write #7, G”, H”, ¥” for the second differential coefli-
cients of £, &, H, ¥ respectively with respect to », and put
1 1
Kip= 22’ Kop = 72’

where a, 0, ¢ are the three principal velocities of propagation, the
equations become

1
Kap. = E?:: (4)

2 2 VZ 24 7” 77 //Z
(m +n —7)17 — I G —pl H — V¥ —
a @

Il
°

|
L

2
_Z7ﬂ1r’,+(”2+l2— Z_Z)G”—mﬂll”—— V‘P”Ziz (8)

I
e

R —

44 4 Vz 7 27 n
— 2wl F” — mn G +(Zz+m2—c—2)H — V¥ 7
796.] If we write

72 m2 n?
T2 _g2 + 7o _ 2t Vi v, (6)

we obtain from these equatmns

VUFVF” —13”) =0,

VU(VG” —m¥”) = 0,;

VU(VH"— n¥") = 0.
Hence, either 7 = 0, in which case the wave is not propagated at
all; or, U= 0, which leads to the equation for 7 given by Fresnel ;
or the gquantities within brackets vanish, in which case the vector
whose components are F”, G, II” is normal to the wave-front and
proportional to the electric volume-density. Since the medium is
a non-conductor, the electric density at any given point is constant,
and therefore the disturbance indicated by these equations is not
periodic, and cannot constitute a wave. We may therefore consider
¥” == 0 in the investigation of the wave.

(M
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797.] The velocity of the propagation of the wave is therefore

completely determined from the equation U/ = 0, or
72 m? n?
visgt it i =0 ®)

There are therefore two, and only two, values of 72 corresponding
to a given direction of wave-front.

If A, p, v are the direction-cosines of the electric current whose
components are #, v, »,

1 N 1 A 1 ’”
A.M.U..;Z-I L—ZG—C‘ZII’ (9)
then INtmp+nv =0} (10)

or the current is in the plane of the wave-front, and its direction
in the wave-front is determined by the equation

Z m, o, 7 o
X(62—62)+ ;(( ——(12)4—;(012—62)_ 0. (11)

These equations are identical with those given by Fresnel if we
define the plaune of polarization as a planc through the ray per-
pendicular to the plane of the electrie disturbance.

According to this electromagnetic theory of double refraction the
wave of normal disturbance, which constitutes one of the chief
difficulties of the ordinary theory, does not exist, and no new
assumption is required in order to account for the fact that a ray
polarized in a principal plane of the crystal is refracted in the
ordinary manner ¥,

Relution between Electric Conductivily and Opacity.

798.] If the medium, instead of being a perfect insulator, is a
conductor whose conductivity per unit of volume is €, the dis-
turbance will consist not only of electric displacements but of
currents of conduction, in which electric energy is transformed into
heat, so that the undulation is absorbed by the medium,

If the disturbance is expressed by a circular function, we may

write F = e~ cog (nt —g2), (1)
for tlns will satisfy the equation

a:r azF ar

—d—z?=p T /17rp.0'672, (2)
provided §*— p? = uKn?, (3)
and 2pq = dwpln. (4)

* Bee Stokes' * Report on Double Refraction'; Brit, dssoc. Reports, 1862, p. 253.
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The velocity of propagation is
)

V==, (5)

q

and the coefficient of absorption is
p = 2mpCV. (6)

Let B be the resistance, in electromagnetic measure, of a plate
whose length is 7, breadth 4, and thickness z,

{

R=— (7)

The proportion of the incident light which will be transmitted by
this plate will be
!

dmp o
Ry

x| 5

eI — ¢

(8)

799.] Most transparcr.lt solid bodies are good insulators, and all
good conductors are very opaque. There are, however, many ex-
ceptions to the law that the opacity of a body is the greater, the
greater its conductivity.

Electrolytes allow an electric current to pass, and yet mapy of
them are transparent. We may suppose, however, that in the case
of the rapidly alternating forces which come into play during the
propagation of light, the electromotive force acts for so short a
time in one direction that it is unable to eflect a complete separation
between the combined molecules. When, during the other half of
the vibration, the electromotive force acts in the opposite direction
it simply reverses what it did during the first half. There is thus
no true conduction through the electrolyte, no loss of electric
energy, and consequently no absorption of light.

800.] Gold, silver, and platinum are good conductors, and yet,
when formed into very thin plates, they allow light to pass through
them. From experiments which I have made on a piece of gold
leaf, the resistance of which was determined by Mr. Hockin, it
appears that its transparency is very much greater than is con-
sistent with our theory, unless we suppose that there is less loss
of energy when the electromotive forces are reversed for every semi-
vibration of light than when they act for sensible times, as in our
ordinary experiments,

801.] Let us next consider the case of a medium in which the
conductivity is large in proportion to the inductive capacity.

In this case we may leave out the term involving K in the equa-
tions of Art. 783, and they then become
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v ry el o, |

v2(1+47m070 =0, ¢ (1)
dt ’

2]]—}-47:'#06“ :O.J

Each of these equations is of the same form as the equation of the
diffusion of heat given in Founer’s Traité de Cholewsr.

802.] Taking the first as an example, the component F of the
vector-potential will vary according to time and position in the same
way as the temperature of a homogeneous solid varies according
to time and position, the initial and the surface-conditions being
made to correspond in the two cases, and the quantity 47 pu C being
numerically equal to the reciproeal of the thermometrie conductivity
of the substance, that is to say, the number of units of volume of
the substance which would be heated one degree by the heat which passes
through a unit cube of the substance, two opposite fuces of whick differ
by one degree of temperature, while the other faces are impermeable to
heat *,

The different problems in thermal conduction, of which Fourier
has given the solution, may be transformed into problems in the
diffusion of electromagnetic quantities, remembering that F, G, I
are the components of a vector, whereas the temperature, in Fourier’s
problem, is a scalar quantity.

Let us take one of the cases of which Fourier has given a com-
plete solution t, that of an infinite medium, the initial state of
which is given.

The state of any point of the medium at the time ¢ is found
by taking the average of the state of every part of the medium,
the weight assigned to each part in taking the average being

wp Or?
e_T—’
where 7 is the distance of that part from the point considered. This
average, in the ease of vector-quantities, is most conveniently taken
by considering each component of the vector separately.

* See Maxwell’s Theory of Heat, p. 235.

+ Traité de la Chaleur, Art, 384. The equation which determines the temperature,
v, at a point (z, y, 2) after a time ¢, in terms of f(a, B, ), the initial temperature at
the point (a, 8, 7), is

\'1 )2+ (B-p)?+ (y—2)?
] 2
St

where k is the thermometric conductivity.
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803.] We have to remark in the first place, that in this problem
the thermal conductivity of Fonrier's medium is to be taken in-
versely proportional to the electric conduetivity of our medium,
so that the time required in order to reach an assigned stage in
the process of diffusion is greater the higher the electric conduct-
ivity. This statement will not appear paradoxical if we remember
the result of Art. 655, that & medinm of infinite conductivity forms
a complete barrier to the process of diffusion of magnetic force.

In the next place, the time requisite for the production of an
assigned stage in the process of diffusion is proportional to the square
of the linear dimensions of the system.

There is no determinate velocity which can be defined as the
velocity of diffusion. If we attempt to measure this velocity by
ascertaining the time requisite for the production of a given amount
of disturbance at a given distance from the origin of disturbance,
we find that the smaller the selected value of the disturbance the
greater the velocity will appear to be, for however great the distance,
and however small the time, the value of the disturbance will differ
mathematically from zero.

This peculiarity of diffusion distinguishes it from wave-propaga-
tion, which takes place with a definite velocity. No disturbance
takes place at a given point till the wave reaches that point, and
when the wave has passed, the disturbance ceases for ever.

804.] Let us now investigate the process which takes place when
an electric current begins and continues to flow through a linear
circuit, the medium surrounding the circuit being of finite electric
conductivity. (Compare with Art. 660).

When the current begins, its first effect is to produce a current
of induction in the parts of the medium close to the wire. The
direction of this current is opposite to that of the original current,
and in the first instant its total quantity is equal to that of the
original current, so that the electromagnetic effect on more distant
parts of the medium is initially zero, and only rises to its final
value as the induction-current dies away on account of the electric
resistance of the medium.

But as the induction-current close to the wire dies away, a new
induction-current is generated in the medium beyond, so that the
space occupied by the induction-current is continually becoming
wider, while its intensity is continually diminishing.

This diffusion and deeay of the induetion-current is a pheno-
menon precisely analogous to the diffusion of heat from a part of
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the medium initially hotter or colder than the rest. We must
remember, however, that since the current is a vector quantity,
and since in a circuit the current is in opposite directions at op-
posite points of the circuit, we must, in calculating any given com-
ponent of the induction-current, compare the problem with one
in which equal quantities of heat and of ecold are diffused from
neighbouring places, in which case the effect on distant points will
be of a smaller order of magnitude.

805.] If the current in the linear circuit is maintained constant,
the induction currents, which depend on the initial change of state,
will gradually be diffused and die away, leaving the medium in its
permanent state, which is analogous to the permanent state of the
flow of heat. In this statc we have

Vi =V2G@ =V2 =0 (2)
throughout the medium, except at the part occupied by the circuit,
in which v2F = 174,

VG = 47, (3)
Vi =4ww.

These equations are suflicient to determine the values of F &, H#
throughout the medium. They indicate that there are no currents
except in the circuit, and that the magnetic forces are simply those
due to the current in the circuit according to the ordinary theory.
The rapidity with which this permanent state is established is so
great that it could not be measured by our experimental methods,
except perhaps in the case of a very large mass of a highly con-
ducting medium such as copper.

Nore.—In a paper published in Poggendoril’s Annalen, June 1867,
M. Lorenz has deduced from Kirchhoff’s equations of electric cur-
rents (Pogg. 4nn. cii, 1856}, by the addition of certain terms which
do not affect any experimental result, a new set of equations, indi-
cating that the distribution of force in the electromagnetic field
may be conceived as arising from the mutual action of contiguous
elements, and that waves, consisting of transverse electric currents,
may be propagated, with a velocity comparable to that of light, in
non-conducting media. Me therefore regards the disturbance which
constitutes light as identical with these electric currents, and he
shews that conducting media must be opaque to such radiations.

These conclusions are similar to those of this chapter, though
obtained by an entirely different method. The theory given in
this chapter was first published in the PAil. Trans. for 1865.
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CHAPTER XXI.

MAGNETIC ACTION ON LIGHT.

806.1 THE most important step in establishing a relation betwcen
electric and magnetic phenomena and those of light must be the
discovery of some instance in which the one set of phenomena is
affected by the other. In the scarch for such phenomena we must
be guided by any knowledge we may have already obtained with
respect to the mathematical or geometrical form of the quantities
which we wish to compare. Thus, if we endeavour, as Mrs. Somer-
ville did, to magnetize a necdle by means of light, we must re-
member that the distinction between magnetic north and south is
a mere malter of direction, and would be at once reversed if we
reverse certain conventlions about the wse of mathematical signs.
There is nothing in magnetism analogous to those phenomena of
electrolysis which enable us to distinguish positive from negative
electricity, by observing that oxygen appears at one pole of a cell
and hydrogen at the other.

Hence we must not expect that if we make light full on one end
of a needle, that end will become a pole of a certain name, for the
two poles do not differ as light does from darkness.

We might expect a better result if we caused eircularly polarized
light to fall on the needle, right-handed light falling on one end
and left-handed on the other, for in some respects these kinds of
light may be said to be related to each other in the same way as
the poles of a magnet. The analogy, however, is faully even here,
for the two rays when combined do not neutralize each other, but
produce a plane polarized ray.

Faraday, who was acquainted with the method of studying the
strains produced in transparent solids by means of polarized light,
made many experiments in hopes of detecting some action on polar-
ized light while passing through a medium in which clectrolytic
conduction or diclectric induction exists*. He was not, however,

* Experimental Researches, 951-954 and 2216-2220.
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able to detect any action of this kind, though the experiments were
arranged in the way hest adapted to discover effects of tension,
the electric force or current being at right angles to the direction
of the ray, and at an angle of forty-five degrees to the plane of
polarization. TFaraday varied these experiments in many ways with-
out discovering any action on light due to electrolytic currents or
to static electric induction.

He succeeded, however, in establishing a relation between light
and magnetism, and the experiments by which he did so are de-
scribed in the nineteenth scries of his Erperimental Researches. We
shall take Iaraday’s discovery as our starting point for further
investigation into the nature of magnetism, and we shall therefore
describe the phenomenon which he observed.

807.] A ray of plane-polarized light is transmitted through a
transparent diamagnetic medium, and the plane of its polarization,
when it emerges from the medium, is ascertained by observing the
position of an analyser when it cuts off the ray. A magnetic force
is then made to act so that the direction of the force within the
transparent medium coincides with the direction of the ray. The
light at once reappears, but if the analyser is turned round through
a certain angle, the light is again cut off. This shews that the
effect of the magnetic force is to turn the plane of polarization,
round the direction of the ray as an axis, through a certain angle,
measured by the angle through which the analyser must be turned
in order to cut off the light.

808.] The angle through which the plane of polarization is
turned is proportional—

(1) To the distance which the ray travels within the medium.
Hence the plane of polarization changes continuously from its posi-
tion at incidence to its position at emergence.

(2) To the intensity of the resolved part of the magnetic force in
the direction of the ray.

(3) The amount of the rotation depends on the nature of the
medium. No rotation has vet been observed when the medium is
alr or any other gas.

These three statements are included in the ‘more general one,
that the angular rotation is numerically equal to the amount by
which the magnetic potential increases, from the point at which
the ray enters the medium to that at which it leaves it, multiplied
by a coefficient, which, for diamagnetic media, is generally positive.

803.] In diamagnetic substances, the direction in which the plane
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of polarization is made to rotate is the same as the direetion in which
a positive current must circulate round the ray in order to produce
a magnetic force in the same direction as that which actually exists
in the medium.

Verdet, however, discovered that in certain ferromagmnetic media,
as, for instance, a strong solution of perchloride of iron in wood-
spirit or ether, the rotation is in the opposite direction to the current
which would produce the magnetic force.

This shews that the difference between ferromagnetic and dia-
magnetic substances does not arise merely from the ¢ magnetic per-
meability’ being in the first case greater, and in the second less,
than that of air, but that the properties of the two classes of bodies
are really opposite.

The power acquircd by a substance under the action of magnetic
force of rotating the plane of polarization of light is not exactly
proportional to its diamagnetic or ferromagnetic magnetizability.
Indeed there are exceptions to the rule that the rotation is positive for
diamagnetic and negative for ferromagnetic substances, for neutral
chromate of potash is diamagnetic, but produces a negative rotation.

810.] There are other substances, which, independently of the
application of magnetic force, cause the plane of polarization to
turn to the right or to the left, as the ray travels through the sub-
stance. In some of these the property is related to an axis, as in
the case of quartz. In others, the property is independent of the
direction of the ray within the medium, as in turpentine, solution
of sugar, &e. In all these substances, however, if the plane of
polarization of any ray is twisted within the medium like a right-
handed screw, it will still be twisted like a right-handed screw if
the ray is transmitted through the medium in the opposite direction.
The direction in which the ohserver has to turn his analyser in order
to extinguish the ray after introducing the medium into its path,
is the same with reference to the observer whether the ray comes
to him from the north or from the south. The direction of the
rotation in space 1s of course reversed when the direction of the ray 1s
reversed. But when the rotation is produced by magnetic action, its
direction in space is the same whether the ray be travelling north
or south. The rotation is always in the same direction as that of
the electric current which produces, or would produce, the actual
magnetic state of the field, if the medium belongs to the positive
class, or in the opposite direction if the medium belongs to the
negative class.

VOL. 1. nd
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402 MAGNETIC ACTION ON LIGHT. [811.

It follows from this, that if the ray of light, after passing through
the medium from north te south, is reflected by a mirror, so as to
return through the medium from south to north, the rotation will
be doubled when it results from magnetic action, When the rota-
tion depends on the nature of the medium alone, as in turpentine, &e.,
the ray, when reflected back through the medium, emerges in the
same plane as it entercd, the rotation during the first passage
through the medium having been exactly reversed during the
second.

811.] The physical explanation of the phenomenon presents con-
siderable difficulties, which can hardly be said to have been hitherto
overcome, either for the magnetic rotation, or for that which
certain media exhibit of themselves. We may, however, prepare
the way for such an explanation by an analysis of the ohbserved
facts.

It is a well-known theorem in kinematics {hat two uniform cir-
cular vibrations, of the same amplitude, having the same periodic
time, and in the same plane, but revolving in opposite directions,
are equivalent, when compounded together, to a rectilinear vibra-
tion. The periodic time of this vibration is equal to that of the
circular vibrations, its amplitude is doulle, and its direction is in
the line joining 1he points at which two particles, describing the
circular vibrations in opposite directions round the same circle,
would meet, Hence if one of the circular vibrations has its phase
accelerated, the direction of the rectilinear vibration will be turned,
in the same direction as that of the circular vibration, through an
angle equal to half the acceleration of phase.

It can also be proved by direct optical experiment that two rays
of light, circularly-polarized in opposite directions, and of the same
intensity, become, when united, a2 plane-polarized ray, and that if
by any means the phase of one of the circularly-polarized rays is
accelerated, the plane of polarization of the resultant ray is turned
round half the angle of acceleration of the phase.

812.] We may therefore express the phenomenon of the rotation
of the plane of polarization in the following manner :—A plane-
polarized ray falls on the medium. This is equivalent to two eir-
cularly-polarized rays, one right-handed, the other left-handed (as
regards the observer). After passing through the medium the ray
is still plane-polarized, but the plane of polarization is turned, say,
to the right (as regards the observer). Hence, of the two circularly-
polarized rays, that which is right-handed must have had its phase
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accelerated with respect to the other during its passage through the
medium.

In other words, the right-handed ray has performed a greater
number of vibrations, and therefore has a smaller wave-length,
within the medium, than the left-handed ray which has the same
periodic time.

This mode of stating what takes place is quite independent of
any theory of light, for though we use such terms as wave-length,
circular-polarization, &ec., which may be associated in our minds
with a particular form of the undulatory theory, the reasoning is
independent of this association, and depends only on facts proved
by experiment.

813.] Let us next consider the configuration of one of these rays
at a given instant. Any undulation, the motion of which at each
point is circular, may be represented by a helix or screw. If the
screw 1s made to revolve about its axis without any longitudinal
motion, each particle will describe a circle, and at the same time the
propagation of the undulation will be represented by the apparent
longitudinal motion of the similarly situated parts of the thread of
the serew. Tt is easy to see that if the screw is right-handed, and
the observer is placed at that end towards which the undulation
travels, the motion of the screw will appear to him left-handed,
that is to say, in the opposite di-
rection to that of the hands of a
watch. Hence such a ray has
been called, originally by French
writers, but now by the whole
scientific world, a left-handed cir-
cularly-polarized ray.

Aright-handed circularly-polar-
ized ray is represented in like
manner by a left-handed helix.
In Fig. 67 the right-handed helix
4, on the right-hand of the figure,
represents a left-handed ray, and
the left-handed helix B, on the left—
hand, represents a right-handed
ray.

814.] Let us now consider two
such rays which have the same Fig. 67.
wave-length within the medium. They are geometrically alike in

nda2
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all respects, except that one is the perversion of the other, like its
image in a looking-glass. One of them, however, say 4, has a
shorter period of rotation than the other. If the motion is entirely
due to the forces called into play by the displacement, this shews
that greater forces are called into play by the same displacement
when the configuration is like 4 than when it is like 5. Hence in
this case the left-handed ray will be accelerated with respect to the
right-handed ray, and this will be the case whether the rays are
travelling from N to § or from § to .

This therefore is the explanation of the phenomenon as it is pro-
duced by turpentine, &e. In these media the displacement eaused
by a circularly-polarized ray calls into play greater forces of resti-
tution when the configuration is like 4 than when it is like B.
The forces thus depend on the configuration alone, not on the direc-
tion of the motion.

But in a diamagnetic medium acted on by magnetism in the
direction 8%, of the two screws 4 and B, that one always rotates
with the greatest velocity whose motion, as seen by an eye looking
from § to N, appears like that of a watch. Hence for rays from §
to NV the right-handed ray B will travel quickest, but for rays
from AN to § the left-handed ray 4 will travel quickest.

815.] Confining our attention to one ray only, the helix B has
exactly the same configuration, whether it represents a ray from §
to N or one from N to §. But in the first instance the ray travels
faster, and therefore the helix rotates more rapidly. Hence greater
forces are called into play when the helix is going round one way
than when it is going round the other way. The forees, therefore,
do not depend solely on the configuration of the ray, but also on
the direction of the motion of its individual parts.

816.] The disturbance which constitutes light, whatever its
physical nature may be, is of the nature of a vector, perpendicular
to the direction of the ray. This is proved from the fact of the
interference of two rays of light, which under certain conditions
produces darkness, combined with the fact of the non-interferenee
of two rays polarized in planes perpendicular to each other. For
since the interference depends on the angular position of the planes
of polarization, the disturbance must be a directed quantity or
vector, and since the interference ceases when the planes of polar-
ization are at right angles, the veetor representing the disturbance
must be perpendicular to the line of intersection of these planes,
that 1is, to the direction of the ray.
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817.] The disturbance, being a vector, can be resolved into com-
ponents parallel to # and y, the axis of z being parallel to the
direction of the ray. Let £ and 5 be these components, then, in the
case of a ray of homogeneous circularly-polarized light,

= rcosf, n = rsinf, (1)
where 0 = nt—gz+a. (2)
In thesc expressions, » denotes the magnitude of the vector, and

¢ the angle which it makes with the direction of the axis of .
The periodic time, 7, of the disturbance is such that

nr = 2. (3)
The wave-length, A, of the disturbance is such that
q)\ = 27. (4)

The velocity of propagation is ;—L

The phase of the disturbance when ¢ and z are both zero is a.
The cireularly-polarized light is right-handed or left-handed
according as ¢ is negative or positive.
Its vibrations are in the positive or the negative direction of
rotation in the plane of (#, ), according as # is positive or negative,
The light is propagated in the positive or the negative direction
of the axis of 2, according as # and ¢ are of the same or of opposite
sigrns.
dn

dg

In all media » varies when ¢ varies, and 1s always of the same

. )
sign with —-
q

Hence, if for a given numerical value of # the value of % s

greater when # is positive than when # is negative, it follows %hat
for a value of ¢, given both in magnitude and sign, the positive
value of # will be greater than the negative value.

Now this is what is observed in a diamagnetic medium, acted on
by a magnetic force, y, in the direction of z. Of the two circularly-
polarized rays of a given period, that is accelerated of which the
direction of rotation in the plane of (#, g) is positive. Hence, of
two circularly-polarized rays, both left-handed, whose wave-length
within the medium is the same, that has the shortest period whose
direction of rotation in the plane of 2y is positive, that is, the ray
which is propagated in the positive direction of z from south to
north, We have therefore to account for the fact, that when in the
cquations of the system ¢ and r are given, two values of n will
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satisfy the equations, one positive and the other negative, the
positive value being numerically greater than the negative,

818.] We may obtain the equations of motien from a considera-
tion of the potential and kinetic energies of the medium. The
potential energy, 7, of the system depends on its configuration,
that is, on the relative position of its parts. In so far as it depends
on the disturbance due to circularly-polarized light, it must be a
function of 7, the amplitude, and g, the coefficient of torsion, only.
It may be different for positive and negative values of ¢ of equal
numerical value, and it probably is so in the case of media which
of themselves rotate the plane of polarization.

The kinetic energy, 7, of the system is a homogeneous function
of the second degree of the velocities of the system, the coefficients
of the different terms being functions of the coordinates.

819.] Let us consider the dynamical condition that the ray may
be of constant intensity, that is, that # may be constant.

Lagrange’s equation for the force in # becomes

: d dl dI 4V
P R ®)
Since 7 1s constant, the first term vanishes. We have therefore the
equation ar 4av
-5t 5=% : (6)
in which ¢ is supposed to be given, and we are to determine the
value of the angular velocity 6, which we may denote by its actual
value, z.

The kinetic encrgy, 7, contains one term involving #?; other
terms may contain products of » with other velocities, and the
rest of the terms are independent of #. The potential energy, 7, is
entirely independent of n. The equation is therefore of the form

An® 4+ Bn+4 C = 0, (7)
This being a quadratic equation, gives two values of #. It appears
from experiment that both values are real, that one is positive and
the other negative, and that the positive value is numerically the
greater. Hence, if 4 is positive, both B and C are negative, for,
if #, and n, are the roots of the equation,
Ad(n, +n)+ DB = 0. (8)
The coefficient, B, therefore, is not zero, at least when magnetic
force acts on the medium. We have therefore to consider the ex-
pression Bz, which is the part of the kinetic energy involving the
first power of n, the angular velocity of the disturbance.
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820.] Every term of 7' is of two dimensions as regards velocity.
Hence the terms involving # must involve some other veloeity.
This veloeity cannot be 7 or ¢, because, in the case we eonsider,
7 and ¢ uare constant. Ilence it is a veloeity which exists in the
medium independently of that motion which constitutes light. It
must also be a velocity related to # in such a way that when it is
naultiplied by # the result is a scalar quantity, for only scalar quan-
tities can occur as terms in the value of 7, which is itself scalar.
Hence this velocity must be in the same direction as #, or in the
opposite direetion, that 1s, it must be an angular velocily about the
axis of 2.

Again, this veloeity cannot be independent of the magnetic foree,
for if it were related to a direction fixed in the medium, the phe-
nomenon would be different if we turned the medium end for end,
which is not the case.

We are therefore led to the conclusion that this velocity is an
invariable accompaniment of the magnetic force in those media
which exhibit the magnetic rotation of the plane of polarization.

821.7 We have been hitherto obliged to use langmnage which is
perhaps too suggestive of the ordinary hypothesis of motion in the
undulatory theory. It is easy, however, to state our result in a
form free from this hypothesis.

Whatever light is, at each point of space there is something
going on, whether displacement, or rotation, or something not yet
imagined, but which is certainly of the nature of a vector or di-
rected quantity, the direction of which is normal te the direction
of the ray. This is completely proved by the phenomena of inter-
ference.

In the case of circularly-polarized light, the magnitude of this
vector remains always the same, but its direction rotates round the
direction of the ray so as to complete a revolution in the periodic
time of the wave. The uncertainty which exists as to whether this
vector is in the plane of polarization or perpendicular to it, does not
extend to our knowledge of the direction in which it rotates in right-
bhanded and in left-handed circularly-polarized light respectively.
The direction and the angular velocity of this vector are perfectly
known, though the physical nature of the vector and its absolute
direction at a given instant are uncertain.

‘When a ray of circularly-polarized light falls on a medium under
the action of magnetic force, its propagation within the medium
is affected by the relation of the direction of rotation of the light to
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the direction of the magnetic force. From this we conclude, by the
reasoning of Art. 821, that in the medium, when under the action
of magnetic force, some rotatory motion is going on, the axis of ro-
tation being in the direction of the magmetic forces; and that the
rate of propagation of circularly-polarized light, when the direction
of its vibratory rotation and the direction of the magnetic rotation
of the medium are the same, is different from the rate of propaga-
tion when these directions are opposite.

The only resecmblance which we can trace between a medium
through which circularly-polarized light is propagated, and a me-
dium through which lines of magnetic force pass, is that in both -
there is a motion of rotation about an axis. But here the resem-
blance stops, for the rotation in the optical phenomenon is that of
the vector which represents the disturbance. This vector is always
perpendicular to the direction of the ray, and rotates about it a
known number of times in a second. In the magnetic phenomenon,
that which rotates has no properties by which its sides can be dis-
tingnished, so that we eannot determine how many times it rotates
in a second.

There is nothing, therefore, in the magnctic phenomenon which
corresponds to the wave-length and the wave-propagation in the op-
tical phenomenon. A medium in which a constant magnetic force
is acting is not, in consequence of that force, filled with waves
travelling in one direction, as when light is propagated through it.
The only resemblance between the optical and the magnetic phenc-
menon 1s, that at each point of the medinm something exists of
the nature of an angular velocity about an axis in the direction of
the magnetic force.

On the Ilypothesis of Molecular Vortices.

822.] The consideration of the action of magnetism on polarized
light leads, as we have seen, to the conclusion that in a medium
under the action of magnetie force something belonging to the
same mathematieal class as an angular velocity, whose axis is in the
direction of the magnetic force, forms a part of the phenomenon.

This angular velocity cannot be that of any portion of the me-
dium of sensible dimensions rotating as a whole. We must there-
fore conceive the rotation to be that of very small portions of the
medium, each rotating on its own axis. This is the hypothesis of
molecular vortices,

The motion of these vortices, though, as we have shewn (Art. 575),
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it does not sensibly affect the visible motions of large bodies, may
be such as to affect that vibratory motion on which the propagation
of light, according to the undulatory theory, depends. The dis-
placements of the medium, during the propagation of light, will
produce a disturbance of the vortices, and the vortices when so dis-
turbed may react on the medium so as to affect the mode of propa-
gation of the ray.

823.] It is impossible, in our present state of ignorance as to the
nature of the vortices, to assign the form of the law which connects
the displacement of the medium with the variation of the vortices.
‘We shall therefore assume that the variation of the vortices caused
by the displacement of the medium is subject to the same conditions
which Helmholtz, in his great memoir on Vortex-motion*, has
shewn to regulate the variation of the vortices of a perfect liquid.

Helmholtz’s law may be stated as follows :—Tet P and § be two
neighbouring particles in the axis of a vortex, then, if in conse-
quence of the motion of the fluid these particles arrive at the
points P’Q)7, the line 2’Q” will represent the new direction of the
axis of the vortex, and its strength will be altered in the ratio of
PQ" to PQ.

Hence if a, 8, y denote the components of the strength of a vor-
tex, and if £, 1, { denote the displacements of the medium, the value
of a will become

- ¢ g9€ | d§
“=a+ta d B Y
dn dr)
B = ﬂ+adz‘+ﬁdu/ Yt (1)
A

Ve ]

We now assume that the same condition is satisfied during the
small displacements of a medium in which a, 8, y represent, not
the components of the strength of an ordinary vortex, but the
components of magnetic force.

824.] The components of the angular velocity of an element of

the medium arec o, = } - (gc ‘lﬁ) ]

d£ d¢
@2 = 2dé(d )

=7+02Z—x‘ +ﬁ@

(2)

o2}

dE
(lt ((lm B @)

* Crelle's Jowrnal, vol, lv, (1858). 'Translated by Tait, Phil. Mag., July, 1867.
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The next step in our hypothesis is the assumption that the

kinetic energy of the medium contains a term of the form

2C(aw;+Boy+ywg)- (3)
This is equivalent to supposing that the angular velocity acquired
by the element of the medium during the propagation of light is a
quantity which may enter into combination with that motion by
which magnetic phenomena are explained.

In order to form the equations of motion of the medium, we must
express its kinetic energy in terms of the velocity of its parts,
the components of which are & n, ( We therefore integrate by
parts, and find

2 C/]/(“‘”l'* Bog - ywg) de dy dz
:Cff(yﬁ—ﬁf)dydz—i—(}/f(ag;—yf) dz dx + Cff(ﬁé—an.) de dy

+0fff{g(dy By (28— ‘%)%’(‘fﬁ-%)}mgm. (4)

The double integrals refer 1o the bounding surface, which may be
supposed at an infinite distance. We may, therefore, while in-
vestigating what takes place in the interior of the medinm, confine
our attention to the triple integral.

825.] The part of the kinetic energy in unit of volume, expressed
by this triple integral, may be written

4w Céu+no+ {w), (5)
where %, v, w are the components of the electric current as given in
equations (E), Art. 607.

It appears from this that our hypothesis is equivalent to the
assumption that the velocily of a particle of the medium whose
components are & 7, ¢ is a quantity which may enter into com-
bination with the electric current whose components are «, », w.

826.] Returning to the expression under the sign of triple inte-
gration in (4), substituting for the values of a, 8, y, those of
o, 8,7, as given by equations (1), and writing

A d
ak for as- +de +ydz (6)

the expression under the 51gn of 1ntegrat10n becomes

$ dn dE _ac dy  d¢
{d}c(d — )T a’/L T dz ‘";j;;(;zg“@)}' (M)

In the case of waves in planes norma] to the axis of z the displace-
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ments are functions of z and ¢ only, so that di/t =7y dLi, and this

expression 1s reduced to

(dzzn dzz ) ®)

The kinetic energy per unit of volume, so far as it depends on
the velocities of displacement, may now be written

. . . d*g . d%y:
T=éP(fz+Uz+C2)+C}'(d727I—ZZ—Zf)’ (9)
where p is the density of the medium.
827.] The components, X and ¥, of the impressed force, referred

to unit of volume, may be deduced from this by Lagrange’s equa-
tions, Art. 564,

_ az¢ d3y

X—p%{—cy dzZdt’ (10)
_d%y 3¢

Y=rz+C7 gay (1

These forces arise from the action of the remainder of the medium
on the element under consideration, and must in the case of an
isotropic medium be of the form indicated by Cauchy,

d d*
¥ = Aod§+A1df+&e, (12)
Y= 4,%7 4 4 &
Y=4y 55 + 1“+c (13)

~ 828.] If we now take the case of a circularly-polarized ray for
which € = rcos (ni—qz), n = 7 sin (né —gz), (14)
we find for the kinetic energy in unit of volume
T = %prin?—Cyrigin; (15)
and for the potential energy in unit of volume
V= 1r2(4dyq*—4, g*+ &¢.)
=g, (16)
where @ is a function of ¢2,
The condition of free propagation of the ray given in Art. 820,

equation (6), is ar dv
=== (17)
which gives pr:—2Cyq%n = Q, (18)

whence the value of » may be found in terms of g.
But in the case of a ray of given wave-period, acted on by
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magnetic force, what we Wﬂnt to determine is the value of “, when n
dy

1s constant, in terms of , when y is constant. Differentiating (18)

(2pn—2Cy g% dn— (‘J—Q+4Cygn) dg—2Cq¢®ndy = 0. (19)

c_iz C’q % {Ig

We thus find iy = pn—Cyga n’

(20)

829.] If A is the wave-length in air, and ¢ the corresponding
index of refraction in the medium,

gA = 271, nAh = 27w, (21)

The change in the value of ¢, due to magnetic action, is in every

case an excecdingly small fraction of its own value, so that we may

write )= gt ggy’ (22)

where ¢, 1s the value of ¢ when the magnetie force is zero. The
angle, 6, through which the plane of polarization is turned in
passing through a thickness ¢ of the medium, is half the sum of
the positive and negative values of ge, the sign of the result being
changed, because the sign of ¢ is negative in equations (14). We
thus obtain

dq
6 = —cy[ly (23)
471'0 di 1
o Y 2(” ) ——— (24)
vP A “A 1—27rCva/\—
P

The second term of the denominator of this fraction is approx-
imately equal to the angle of rotation of the plane of polarization
during its passage through a thickness of the medium equal to half
a wave-length. It is therefore in all actual cases a quantity which
we may neglect in comparison with unity.

roeps anC ~

Writing p = m, (25)
we may call z the coefficient of magnetic rotation for the medium,
a quantity whose valuc must be determined by observation. It is
found to be positive for most diamagnetie, and negative for some
paramagnetic media. We have therefore as the final result of our

theor
y 0= mC'y)\z (z dA) (26)

where 6 is the angular rotation of the plane of polarization, » a
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constant determined by observation of the medium, y the intensity
of the magnetic force resolved in the direction of the ray, ¢ the
length of the ray within the medium, A the wave-length of the
light in air, and 4 its index of refraction in the medinm,

830.] The only test to which this theory has hitherto been sub-
jected, is that of comparing the values of 0 for different kinds of
light passing through the same medium and acted on by the same
magnetic force.

This has been done for a considerable number of media by M.
Verdet ¥, who has arrived at the following results :—

(1) The magnetic rotations of the planes of polarization of the
rays of different colours follow approximately the law of the inverse
square of the wave-length.

(2) The exact law of the phenomena is always such that the pro-
duct of the rotation by the square of the wave-length increases from
the least refrangible to the most refrangible end of the spectrum.

(3) The substances for which this increase is most sensible are
also those which have the greatest dispersive power,

He also found that in the solution of tartaric acid, which of itself
produces a rotation of the plane of polarization, the magnetic rotation
is by no means proportional to the natural rotation.

In an addition to the same memoirt Verdet has given the results
of very careful experiments on bisulphide of carbon and on creosote,
two substances in which the departure from the law of the inverse
square of the wave-length was very apparent. Ile has also com-
pared these results with the numbers given by three different for-

mulz, 7
@O 0= mcy)\z (z ;f\)

di
(I o=mey (z d;\)

di
(111) 0 =mecy (&-—— d—;\)

The first of these formule, (I), is that which we have already ob-
tained in Art. 829, equation (26). The second, (II), is that which
results from substituting in the equations of motion, Art. 826, equa-
d?n

. a3y @3¢
tions (10), (11), terms of the form —= and —- >, instead of To2di

dt3 dt

* Recherches sur les propriéiés optiques développédes dans les corpe transparents
par laction du magnétisme, 4™° partie. Comptes Bendus, t. lvi. p. 630 (6 April, 1863).
1 Comptes Rendus, 1vii, p. 670 (19 Oct., 1863).
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I am not aware that this form of the equations has

been suggested by any physical theory. The third formula, (ITT),
results from the physical theory of M. C. Neumann*, in which the

equations of motion contain terms of the form % and — Zf +.

It is evident that the values of 0 given by the formula (IIT1) are
not even approximately proportional to the inverse square of the
wave-length. Those given by the formulz (I) and (II) satisfy this
condition, and give values of § which agree tolerably well with the
observed values for media of moderate dispersive power. For bisul-
phide of carbon and ereosote, however, the values given by (II) differ
very much from those observed. Those given by (1) agree better
with observation, but, though the agreement is somewhat close for
bisulphide of carbon, the numbers for creosote still differ by quan-

titics much greater than can be accounted for by any errors of
observation.

Magnetic Rotation of the Plane of Polarization (from Verdet).
Bisulphide of Carbon at 24°. 9 C.

Lines of the spectrum C D E F G

Observed rotation 592 768 1000 1234 1704

Calculated by I. 589 760 1000 1234 1713
" 1I. 606 772 1000 1216 1640
- I11. 943 967 1000 1034 1091

Rotation of the ray F = 25°,2%’,

Creosote at 24° 3 C.

Lines of the spectrum C D E F (24

Observed rotation 573 758 1000 1241 1723

Calculated by L. 617 780 1000 1210 1603
» I1 623 789 1000 1200 1565
” II1. 976 993 1000 1017 1041

Rotation of the ray £ = 21°.58’.

We are so little acquainted with the details of the molecular

* ¢ Explicare tentatur quomodo fiat ut Tucls planum polarizationis per vires elec-
tricas vel magneticas declinetur.” Halds Sexonum, 1858.

+ These three forms of the equations of motion were first suggested by 8ir G. B.
Airy (Phil. Mag., June 1846) as & means of analysing the phenomenon then recently
discovered by Faraday. Mac Cullagh had previously suggested equations containing

3

terms of the form g? in order to represent mathematically the phenomena of quartz.

These equations were offered by Mac Cullagh and Airy, ‘not as giving a mechanical
explanation of the phenomena, but as shewing that the phenomena may be explained
by equations, which equations appear to be such as might possibly be deduced from
some plausible mechanical assumption, although no such assumption has yet been
made.’
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constitution of bodies, that it is not probable that any satisfactory
theory can be formed relating to a particular phenomenon, such as
that of the magnetic action on light, until, by an induction founded
on a number of different cases in which visible phenomena are found
to depend upon aetions in which the molecules are concerned, we
learn something more definite about the properties which must be
attributed to a molecule in order to satisfy the conditions of ob-
served facts.

The theory proposed in the preceding pages is evidently of a
provisional kind, resting as it does on unproved hypotheses relating
to the nature of molecular vortices, and the mode in which they are
affected by the displacement of the medium, We must therefore
regard any coincidence with observed fucts as of much less scientific
value in the theory of the magnetic rotation of the plane of polari-
zation than in the electromagnetic theory of light, which, though it
involves hypotheses about the electric properties of media, does not
speculate as to the constitution of their molecules.

831.] Nore.—The whole of this chapter may be regarded as an
expansion of the exceedingly impertant remark of Sir William
Thomson in the Proceedings of the Royal Society, June 1856 :—* The
magnetic influence on light discovered by Faraday depends on the
direction of motion of moving particles. For instance, in a medium
possessing it, particles in a straight line parallel fo the lines of
magnetic foree, displaced to a helix round this line as axis, and then
projected tangeniially with such velocities as to describe circeles,
will have different veloeitics according as their motions are round
in one direction (the same as the nominal direction of the galvanic
current in the magnetizing coil), or in the contrary direction. But
the elastic reaction of the medium must be the same for the same
displacements, whatever be the velocities and directions of the par-
ticles ; that i1s to say, the forces which are balanced by centrifugal
foree of the eireular motions are equal, while the luminiferous
motions are unequal. The absolute circular motions being there-
fore either equal or such as to transmit equal centrifugal forces to
the particles initially considered, it follows that the luminiferous
motions are only components of the whole motion; and that a less
luminiferous eomponent in one direction, ecompounded with a mo-
tion existing in the medium when transmitting no light, gives an
equal resultant to that of a greater luminiferous motion in the con-
trary direction eompounded with the same non-luminous motion.
I think it 1s not only impossible to conceive any other than this
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dynamical explanation of the fact that circularly-polarized light
transmitted through magnetized glass parallel to the Jines of mag-
netizing force, with the same quality, right-handed always, or left-
handed always, is propagated at different rates according as its
course is in the direction or is contrary to the direction in which a
north magnetic pole is drawn ; but I believe it can be demonstrated
that no other explanation of that fact is possible. llence it appears
that Faraday’s optical discovery affords a demonstration of the re-
ality of Ampeére’s explanation of the ultimate nature of mugnetism ;
and gives a definition of magnetization in the dynamical theory of
heat. The introduction of the principle of moments of momenta
(*‘ the conservation of areas”) into the mechanical treatment of
Mr. Rankine’s hypothesis of © molecular vortices,” appears to indi-
cate a line perpendicular to the plane of resultant rotatory mo-
mentum (“ the invariable plane”) of the thermal motions as the
magnetic axis of a magnelized body, and suggests the resultant
moment of momenta of these motions as the definite measure of
the “magnetic moment.” The explanation of all phenomena of
electromagnetic attraction or repulsion, and of electromagnetic in-
duction, is to be looked for simply in the inertia and pressure of
the matter of which the motions constitute heat. Whether this
matter is or is not electricity, whether it is a continuous fluid inter-
permeating the spaces between molecular nuclei, or is itself mole-
cularly grouped ; or whether all matter is continuous, and molecular
heterogeneousness consists in finite vortical or other relative mo-
tions of contiguous parts of a body ; it is impossible to decide, and
perhaps in vain to speculate, in the present state of science.’

A theory of molecular vortices, which I worked out at consider-
able length, was published in the PZil. Mag. for March, April, and
May, 1861, Jan. and Feb. 1862.

I think we have good evidence for the opinion that some pheno-
menon of rotation is going on in the magnetic field, that this rota-
tion is performed by a great number of very small portions of
matter, each rotating on its own axis, this axis being parallel to the
direction of the magnetic force, and that the rotations of these dif-
ferent vortices are made to depend on one another by means of some
kind of mechanism connecting them.

The attempt which I then made to imagine a working model of
this mechanism must be taken for no more than it really is, a de-
monstration that mechanism may be imagined capable of producing
a connexion mechanically equivalent to the actuul connexion of the
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parts of the electromagnetic field. The problem of determining the
mechanism required to establish a given species of connexion be-
tween the motions of the parts of a system always admits of an
infinite number of solutions. Of these, some may be more clumsy
or more complex than others, but all must satisty the conditions of
mechanism in general.

The following results of the theory, however, are of higher
value :— :

(1) Magnetic force is the cffect of the centrifugal force of the
vortices.

(2) Electromagnetic induction of currents is the effect of the
forces called into play when the veloeity of the vortices is changing.

(3) Electromotive force arises from the stress on the connecting
mechanism.

(4) Electric displacement arises from the elastic yielding of the
connecting mechanism,

YOr. 11, Ee
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CHAPTER XXII.

FERROMAGNETISM AND DIAMAGNETISM EXPLAINED BY
MOLECULAR CURRENTS,

On Electromagnetic Theories of Magnetism.

832.] WE have seen (Art. 380) that the action of magnets on
one another can be accurately represented Ly the attractions and
repulsions of an Imaginary substance called ¢magnetic matter.)
‘We have shewn the reasons why we must not suppose this magnetie
matter to move from one part of a magnet to another through a
sensible distance, as at first sight it appears to do when we
magnetize a bar, and we were led to Poisson’s hypothesis that the
magnetic matter is strictly confined to single molecules of the mag-
netic substance, so that a magnetized molecule is one in which the
oppusite kinds of magnetic matter are more or less separated to-
wards opposite poles of the molecule, but so that no part of either
can ever be actually separated from the molecule (Art. 430).

These arguments completely establish the fact, that magnetiza-
tion is a phenomenon, not of large masses of iron, but of molecules,
that is to say, of portions of the substance so small that we cannot
by any mechanical method cut one of them in two, so as to obtain a
north pole separate from a south pole. DBut the nature of a mag-
netic molecule is by no means determined without further investi-
gation. We have scen (Art. 442) that there are strong reasons for
believing that the act of magnetizing iron or steel does not consist
in imparting magnetization to the molecules of which it is com-
posed, but that these molecules are already magnetic, even in un-
magnetized iron, but with their axes placed indifferently in all
directions, and that the act of magnetization consists in turning
the molecules so that their axes are either rendered all parallel to
one direction, or at least are deflected towards that direction.
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833.] Still, however, we have arrived at no explanation of the
nature of a magnetic molecule, that is, we have not recognized its
likeness to any other thing of which we know more. We have
therefore to consider the hypothesis of Ampére, that the magnetism
of the molecule is due to an electric current constantly circulating
in some closed path within it.

It is possible to produce an exact imitation of the action of any
magnet on points external to it, by means of a sheet of electric
currents properly distributed on its onter surface. But the action
of the magnet on points in the interior is quite different from the
action of the electric currents on corresponding points. Hence Am-
pére concluded that if magnetism is to be explained by means of
electric currents, these currents must cireulate within the molecules
of the magnet, and must not flow from one molecule to another.
As we cannot experimentally measure the magnetic action at a
point in the interior of a molecule, this hypothesis cannot be dis-
proved in the same way that we can disprove the hypothesis of
currents of sensible extent within the magnet.

Besides this, we know that an eleetric current, in passing from
one part of a conductor to another, meets with resistance and gene-
rates heat ; so that if there were currents of the ordinary kind round
portions of the magnet of sensible size, there would be a constant
expenditure of energy required to maintain them, and a magnet
would be a perpetual source of heat. By confining the circuits to
the molecules, within which nothing is known about resistance, we
may assert, without fear of contradiction, that the current, in cir-
culating within the molecule, meets with no resistance.

According 1o Ampeére’s theory, therefore, all the phenomena of
magnetism are due to electrie eurrents, and if we could make oh-
servations of the magnetic force in the interior of a magnetic mole-
cule, we should find that it obeyed exactly the same laws as the
force in a region surrounded by any other electric eircuit.

834.] In treating of the force in the interior of magnets, we have
supposed the measurements to be made in a small crevasse hollowed
out of the substance of the magmnet, Art. 395. We were thus led
to consider two different quantities, the magnetic force and the
magnetic induction, both of which are supposed to be observed in
a space from which the magnetic matter is removed. We were
not supposed to he able to penetrate into the interior of a mag-
netic molecule and to observe the force within it.

If we adopt Ampere’s theory, we consider a magnet, not as a

Ec2
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continuous substance, the magnetization of which varies from point
to point aceording to some easily conceived law, but as a multitude
of molecules, within each of which circulates a system of electric
currents, giving rise to a distribution of magnetic force of extreme
complexity, the diregtion of the force in the interior of a molecule
being generally the reverse of that of the average force in its neigh-
bourhood, and the magnetic potential, where it exists at all, being
a {unction of as many degrees of multiplicity as there are molecules
in the magnet.

835.] But we shall find, that, in spite of this apparent complexity,
which, however, arises merely from the coexistence of a multitude
of simpler parts, the mathematical theory of magnetism is greatly
simplified by the adoption of Ampére’s theory, and by extending
our mathematical vision into the interior of the molecules.

In the first place, the two definitions of magnetic force are re-
duced to one, both becoming the same as that for the space outside
the magnet. In the next place, the components of the magnetie
force everywhere satisfy the condition to which those of induction

are subJect, namely, d_a @ N fil’ — o )
de ' dy ' dz T

In other words, the distribution of magnetic force is of the
same nature as that of the velocity of an incompressible fluid,
or, as we have expressed it in Art. 25, the magnetic force has no
convergence.

Finally, the three vector functions—the electromagnetic momen-
tum, the magnetic force, and the electric current—become more
simply related to each other. They are all vector functions of no
convergence, and they are derived one from the other in order, by
the same process of taking the space-variation, which is denoted
by Hamilton by the symbol V,

836.] But we are now considering magnetism from a physical
point of view, and we must enquire into the physical properties of
the molecular currents. We assume that a current is circulating
in a molecule, and that it meets with no resistance. If Z is the
coefficient of self-induction of the molecular cireuit, and A7 the co-
efficient of mutual induction between this eircuit and some other
circuit, then if y is the current in the molecule, and 3" that in the
other circuit, the equation of the current y is

d .
oy Ly +3Y) = —Ry; (2)
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and since by the hypothesis there is no resistance, £ = 0, and we
get by integration
Ly+ My = constant, = Ly,, say. (3)
Let us suppose that the ared of the projection of the molecular
circuit on a plane perpendicular to the axis of the molecule 1s 4,
this axis being defined as the normal to the plane on which the
projection is greatest. 1f the action of other currents produces a
magnetic force, X, in a direction whose inélindtion to the axis of
the molecule is 6, the quantity /7" becomes X 4 cosd, and we have
as the equation of the current

Ly+XAcos0 = Ly, (4)
where vy, is the value of y when X = 0.

It appears, therefore, that the strength of the molecular current
depends entirely on its primitive value y,, and on the intensity of
the magnetic force due to other currents.

837.] If we suppose that there is no primitive current, but thut
the current is entirely due to induetion, then

y=— ]j{ cos 0. (5)

The negative sign shews that the direction of the induced cur-
rent 1s opposite to that of the inducing current, and its magnetic
action is such that in the interior of the eirenit it acts in the op-
posite direction to the magnetic force, In other words, the mole-
cular current acts like a small magnet whose poles are turned
towards the poles of the same name of the inducing magnet.

Now this is an action the reverse of that of the molecules of iron
under magnetic action. The molecular currents in iron, therefore,
are not. excited by induction. But in dimmmagnetic substances an
action of this kind is observed, and in faet this is the explination of
diamagnetic polarity which was first given by Weber.

Weber’'s Theory ngz:amaynetism.

838.] According to Weber’s theory, there etist in the molecules
of diamagnetic substances certain channels round which an clectrie
current can circulate without resistance. It is muanifest that if we
suppose these channels to traverse the molecule in every direction,
this amounts to making the molecule a perfect conduetor,

Beginning with the assumption of a linear cirenit within the mo-
lecule, we have the strength of the current given by equation (5).
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The magnetic moment of the current is the product of its strength
by the area of the circuit, or y 4, and the resolved part of this in the
direction of the magnetizing force is y 4 cos 0, or, by (5),

X 42

L
If there are z such molecules in unit of volume, and if their axes are
distributed indifferently in all directions, then the average vulue of
cos?0 will be &, and the intensity of magnetization of the substance

cos? 0. (6)

will be _LﬂXiz. 7
L
Neumann's coeflicient of magnetization is therefore
c=—3"". ®
=%

The magnetization of the substance is therefore in the opposite
direction to the maguetizing force, or, in other words, the substance
1s diamagnetic. Tt is also exactly proportional to the magnetizing
force, and does not tend to a finite limit, as in the case of ordinary
magnetic induction. See Arts. 442, &e.

839.] If the directions of the axes of the molecular channels are
arranged, not indifferently in all directions, but with a preponder-
ating number in certain directions, then the sum

42
= 7, o8 0
extended to all the molecules will have different values according
to the direction of the line from which 0 is measured, and the dis-
tribution of these values in different directions will be similar to the
distribution of the values of moments of inertia about axes in dif-
ferent directions through the same poiut.

Such a distribution will explain the magnetic phenomena related
to axes in the body, described by Pliicker, which Faraday has called
Magne-crystallic phenomena. See Art. 435.

840.7 Let us now consider what would be the effect, if, instead
of the electric current being confined to a certain channel within
the molecule, the whole molecule were supposed a perfect conductor.

Tiet us begin with the case of a body the form of which is acyelie,
that is to say, which is not in the form of a ring or perforated
body, and let us suppose that this body is everywhere surrounded
by a thin shell of perfectly conducting matter.

We have proved in Art. 654, that a closed sheet of perfeetly
conducting matter of any form, originally free from currents, be-
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comes, when exposed to external magnetic force, a current-sheet, the
action of which on every point of the interior is such as to make
the magnetie force zero.

Tt may assist us in understanding this case if we observe that
the distribution of magnetic foree in the neighbourhood of such a
body is similar to the distribution of velocity in an incompressible
fluid in the neighbourhood of an impervious body of the same form.

It is obvious that if other conducting shells are placed within
the first, since they are not exposed to magnetic force, no currents
will be excited in them. Hence, in a solid of perfectly conductling
material, the effect of magnetic foree is to generate a system of
currents which are entirely confined to the surface of the body.

841.] If the conducting body is in the form of a sphere of radius
7, its magnetic moment is

-3 X,
and if a number of such spheres are distributed in a medium, so
that in unit of volume the volume of the conducting matler is %,
then, by putting py=1, and p,=0 in equation (17), Art. 314, we find
the coeflicient of magnetic permeability,
2—24

. 9
whence we obtain for Poisson’s magnetic coeflicient
F=—3, (10)
and for Neumann’s coeflicient of magnetization by induction
3 K
2 _r 11
: aw 2+ K ()

Since the mathematical conception of perfectly conducting bodies
leads to results exceedingly different from any phenomena which
we can observe in ordinary conductors, let us pursue the subject
somewhat further.

842.] Returning to the case of the conducting channel in the
form of a closed curve of area 4, as in Art. 836, we have, for the
moment of the electromagnetie force tending to inerease the angle 4,

1M .
yy’%zg:—yXA sin } (12)
2 42
= —Z‘sin()cos 9. (13)

This force is positive or negative according as 0 is less or greater
than a right angle. Hence the effect of magnetic force on a per-
fectly conducting channel tends to turn it with ils axis at right
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angles to the line of magnetic force, that is, so that the planc of the
channel becomes parallel to the lines of force.

An effect of a similar kind may be observed by placing a penny
or a copper ring between the poles of an electromagnet. At the
instant that the magnet is excited the ring turns its plane towards
the axial direction, but this force vanishes as soon as the currents
are deadened by the resistance of the copper *.

843.] We have hitherto considered only the case in which the
molecular currents are entirely excited by the external magnetic
force. Let us next examine the bearing of Weber’s theory of the
magneto-electric induction of molecular currents on Ampere’s theory
of ordinary magnetism. According to Ampére and Weber, the
molecular currents in magnetic substances are not excited by the
external magnetic force, but are already there, and the molecule
itself is acted on and deflected by the electromagnetic action of the
magnetic force on the conducting circuit in which the current flows.
‘When Ampére devised this hypothesis, the induction of electric cur-
rents was not known, and he made no hypothesis to account for the
existence, or to determine the strength, of the molecular currents.

‘We are now, however, bound to apply to these currents the same
laws that Weber applied to his currents in diamagnetic molecules.
We have only to suppose that the primitive value of the current v,
when no magnetic force acts, is not zero but y,. The strength of
the current when a magnetic force, X, acts cn a molecular current
of area 4, whose axis is inclined 0 to the line of magnetic force, is

y:yo—%écose, (1)
and the moment of the couple tending to turn the molecule so as
to increase 6 is . X2 42

—y, XAsin g + Y 249. (15)
Ience, putting A
A = m, - = B, (16)
Yo Ly,
in the investigation in Art. 443, the equation of equilibrium becomes
Xsin §—BX?sinfcosd = Dsin(a—¥6). (17)

The resolved part of the magnetic tnoment of the current in the
direction of X 1s

X 42
yAcos@ = y,Adcosd — —Zl— cos? 4, (18)

= m cos 6(1— B X cos 0). (19)
* See Faraday, FEap. Res., 2310, &c.
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844.] These conditions differ from those in Weber’s theory of
magnetic induetion by the terms involving the coefficient B, If
BX is small compared with unity, the results will approximate to
those of Weber's theory of magnetism. 1f 5X is large compared
with unity, the results will approximate to those of Weber’s theory
of diamagnetism.

Now the greater y;, the primitive value of the molecular current,
the smaller will B become, and if / 1s also large, this will also
diminish B. Now if the current flows in a ring channel, the value

< R . . . .
of L depends on log]?—., where [l i1s the radius of the mean line of

the channel, and # that of its section. The smaller therefore the
section of the ehannel compared with its area, the greater will be L,
the coeflicient of self-induction, and the more nearly will the phe-
nomena agree with Weber’s original theory. There will be this
difference, however, that as X, the magnetizing force, increases, the
temporary magnetic moment will not only reach a maximum, but
will afterwards diminish as X inecreases.

If 1t should ever be experimentally proved that the temporary
magnetization of any substance first increascs, and then diminishes
as the magnetizing force is continually increased, the evidence of
the existence of these molecular currents would, I think, be raised
almost to the rank of a demonstration.

845.1 If the molecular currents in diamagnetic substances are
confined to definite channels, and if the molecules are capable of
being deflected like those of magnetic substances, then, as the mag-
netizing force Increases, the diamagnetic polarity will always increase,
but, when the force is great, not quite so fast as the magnetizing
force. The small absolute value of the diamagnetic coefficient shews,
however, that the deflecting foree on each molecule must be small
compared with that exerted on a magnetic molecule, so that any
result due to this deflexion is not likely to be perceptible.

If, on the other hand, the molecular currents in diamagnetic
bodies are free to flow through the whole substance of the molecules,
the diamagnetic polarity will be strictly proportional to the mag-
netizing forece, and its amount will lead to a determination of the
whole space occupied by the perfectly conducting masses, and, if we
know thie number of the molecules, to the determihation of the size
of each,
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CHAPTER XXIIL

THEORIES OF ACTION AT A DISTANCE.

On the Explanation of Ampere’s Formula given by Gauss and Weber.

846.] The attraction between the elements ds and ds” of two
circuits, carrying electric currents of intensity i and i, is, by
Ampere’s formula,

1 ds ds” dr dr
_ 1
72 (2 cose+3 ds ds’ ) ®
i ds ds’ dir  dr dr
W ey, 2
or 72 (2 7 dsds  ds KZS’) ’ ( )

the currents being estimated in electromagnetic units. See Art. 526.

The quantities, whose meaning as they appear in these expres-
sions we have now to interpret, are
dr dr d*r
ds dy’ " dsdy’
and the most obvious phenomenon in which to seek for an inter-
pretation founded on a direct relation between the currents is the
relative velocity of the electricity in the two elements.

847.] Let us therefore consider the relative motion of two par-
ticles, moving with constant velocities » and »” along the elements
ds and ds” respectively. 'The square of the relative velocity of these
particles is

COos &,

w? = 0?2 —2vv'cos e v (3)
and if we denote by 7 the distance between the particles,
dr dr ,dr

A L 4
bV ?st +v ds’ (4)

dre?  dr\? Ldr dr )

) = . i, 4 5

57) =0(g) Rt ( ) ®)

?r L dPr . R ,o @7

_ 2" -
2z T U gt + 20 ds //s’+ s’
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where the symbol 9 indicates that, in the quantity differentiated,
the coordinates of the particles are to be expressed in terms of the
time.

It appears, therefore, that the terms involving the product v»” in
the equations (3), (5), and (6) contain the quantities occurring in
(1) and (2) which we have to interpret. We therefore endeavour to

express (1) and (2) in terms of #? and But in order to

or 2 r
IR
do s0 we must get rid of the first and third terms of each of these
expressions, for they involve quantities which do not appear in the
formula of Ampére. Hence we cannot explain the electric current
as a transfer of electricity in one direction only, but we must com-
bine two opposite strecams in each current, so that the combined
effect of the terms involving ¢* and v"? may be zero.

848.] Let us therefore suppose that in the first element, ds, we
have one electric particle, ¢, moving with velocity », and another, ¢,
woving with velocity »;, and in the same way two particles, ¢” and
€1, In ds’, moving with velocities v and #'| respectively.

The term involving #2 for the combined action of these particles

is I (%) = (vie + vle) (¢ + ¢). (7)
Similarly 2 (w%e) = (v +v" 2% ) (e +  ¢); (8)
and Z(ev'ee”) = (ve + wvie)) (W€ +0€7). 9

In order that = (v2e¢¢”) may be zero, we must have either
€+e; =0, or vletwv’le =0. (10)

According to Fechner’s hypothesis, the electric current consists
of a current of positive electricity in the positive direction, com-
bined with a current of negative electricity in the negative diree-
tion, the two currents being exactly equal in numerical magnitude,
both as respects the guantity of electricity in motion and the velo-
city with which it is moving. Hence both the conditions of (10)
are satisfied by Fechner’s hypothesis.

But it is suflicient {or our purpose to assume, either—

That the quantity of positive electricity i each element is nu-
merically equal to the quantity of negative electricity ; or—

That the gnantities of the two kinds of electricity are inversely
as the squares of their velocities.

Now we know that by charging the second conducting wire as a
whole, we can make ¢ + ¢, either positive or negative. Such a
charged wire, even without a current, according to this formula,
would act on the first wire carrying a current in which v?¢ + 7%,
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has a value differing from zero. Such an action has never been
observed.

Therefore, since the quantity ¢’ + ¢, may be shewn experimentally
not to be always zero, and since the quantity v2e¢+ v2e, 1s not
capable of being experimentally tested, it is better for these specu-
lations to assume that it 1s the latter quantity which invarably
vanishes.

849.] Whatever hypothesis we adopt, there can be no doubt that
the total transfer of electricity, reckoned algebraically, along the
first circuit, is represented by

. ve +vie, = cids;
where ¢ is the number of units of statical electricity which are
transmitted by the unit electric current in the unit of time, so that
we may write equation (9)

= (vv'ee’) = c2it’ds dy’. (11)
Hence the sums of the four values of (3), (5), and (6) become
S (ec'u?) = —2c%it’ds ds’ cos €; (12)
z(ee (M))_Zczu’dsds i dr’, (13)
b (ee’r ) = 2c%1'ds ds'r iy ; (14)
342 ' ds ds’

and we may write the two expressions (1) and (2) for the attraction
between ds and ds”

s ) o
and ’clzz[eg aaﬂ (a/)ﬂ (16)

850.] The ordinary expression, in the theory of statical electri-

,

city, for the repulsion of two electrical particles ¢ and ¢ is ;i— , and

x (%) =r L4, (7
which gives the electrostatic repulmon between the two elements if
they are charged as wholes.

Hence, if we assume for the repulsion of the two particles either
of the modified expressions

ji;[l+ 2( ?(35))} (18)
or %,[1+1 az~ )) (19)

we may deduce from them both the ordlnal_y electrostatic forces, and
the forces acting between currents as determined by Ampére,

IRIS - LILLIAD - Université Lille 1



853.] FORMULA OF GAUSS AND WEBER. 429

851.7 The first of these expressions, (18), was discovered by
Gauss * in July 1835, and interpreted by him as a fundamental law
of electrical action, that * Two elements of electricity in a state of
relative motion atiract or repel one anotler, but not in the same
way as if they are in a state of relative rest.” This discovery was
not, so far as I know, published in the lifetime of Gauss, so that the
sccond expression, which was discovered independently by W.Weber,
and published in the first part of his celebrated Flektrodynamische
Maashestimmungent, was the first result of the kind made known
to the scientific world.

852.] The two expressions lead to precisely the same result when
they are applied to the determination of the mechamcal force be-
tween two electric currents, and this result is identical with that
of Ampére. But when they are considered as expressions of the
physical law of the action between two electrical particles, we are
led to enguire whether they are consistent with other known facts
of nature.

Both of these expressions involve the relative velocity of the
particles. Now, in establishing by mathematical reasoning the
well-known principle of the conservation of energy, it is generally
assumed that the force acting between two particles is a function of
the distance only, and it is commonly stated that if it is a function
of anything else, such as the time, or the velocity of the particles,
the proof would not hold.

Henee a law of electrical action, involving the velocity of the
particles, has sometimes been supposed to be inconsistent with the
principle of the eonservation of energy.

853.] The formula of Gauss 1s 1neonsistent with this prineiple,
and must therefore be abandoned, as it leads to the conclusion that
energy might be indefinitely gencrated in a finite system by physical
means. 'This objection does not apply to the formula of Weber, for
he has shewnt that if we assume as the potential energy of a system
consisting of two electric particles,

e’ 1,972
\/,=7]:1—2—62 bi):l’ (20)
the repulsion between them, which is fonnd by differentiating this
quantity with respect to », and changing the sign, is that given by
the formula (19).
Werle (Gottingen edition, 1867), vol. v. p. 616.

Abhk. Leibnizens Ges., Leipzig (1846).
Pogg. Ann., Ixxiii. p. 229 (1848).
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Hence the work done on a moving particle by the repulsion of a
fixed particle is 7, —,, where y, and , are the values of y at the
beginning and at the end of its path. Now y depends only on the
distance, 7, and on the velocity resolved in the direction of r. If,
therefore, the particle deseribes any closed path, so that its position,
veloeity, and direction of motion are the same at the end as at the
beginning, yr, will be equal to v, and no work will be done on the
whole during the cycle of operations.

Hence an indefinite amount of work cannot be generated by a
particle moving in a periodic manner under the action of the force
assumed by Weber.

854.] But Helmholtz, in his very powerful memoir on the ‘Equa-
tions of Motion of Electricity.in Conductors at Rest’*, while he
shews that Weber’s formula 1s not Inconsistent with the principle
of the conservation of energy, as regards only the work done during
a complete eyclical operation, points out that it leads to the concln-
sion, that two electrified particles, which move according to Weber’s
law, may have at first finite velocities, and yet, while still at a finite
distance from each other, they may acquire an infinite kinetic energy,,
and may perform an infinite amount of work.

To this Webert replies, that the initial relative velocity of the
particles in Helmholtz’s example, though finite, is greater than the
velocity of light; and that the distance at which the kinetic energy
becomes infinile, though finite, is smaller than any magnitude which
we can perceive, so that it may be physically impossible to bring two
molecules so near together. The example, therefore, cannot be tested
by any experimental method.

Helmholiz ] has therefore stated a case in which the distances are
not too small, nor the veloeities too great, for experimental verifica-
tion. A fixed non-conducting spherical surface, of radius e, is uni-
formly charged with electricity to the surface-density o. A particle,
of mass m and carrying a charge ¢ of electricity, moves within the
sphere with velocity v. The electrodynamic potential calculated
{rom the formula (20) is

2
47mae(1~(%), (21)
and is Independent of the position of the particle within the sphere.
Adding to this /, the remainder of the potential energy arising

* Orelle's Journal, 72 (1870).

+ Elektr. Maasb. tnbesondere iiber dus Princip der Erlialtung der Enerygie.
T Berlin Monatsberiche, April 1872; PLil. Mag., Dee. 1872, Supp.
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from the action of other forces, and $m»?, the kinetic encrgy of the
particle, we find as the equation of energy

TaOoE

é(m—% Py ’

Since the second term of the coefficient of +* may be increased in-

definitely by increasing #, the radius of the sphere, while the surface-

density o remains constant, the coeflicient of ¥ may be made negative.

Acceleration of the motion of the particle would then correspond to

diminution of its vis vive, and a body moving in a closed path and

)?)2+47ra,¢re+ 7 =